C O M M U N I C A T I O N S
Chart 1
Figure 1. Stereochemical model.
affording the products with high enantioselectivity (entries 4-7).
Compound 5j gave the product in high yield and 98% ee, even
when using 30 mol % of the thiourea catalyst (entry 8). Cinnamate
5i was less reactive and gave the product in low yield and selectivity
(entry 9). We have previously shown that the conjugate addition
products can be readily converted to â-amino acids.7 Overall, there
is good substrate scope for the addition of amines to pyrazole
derived enoates using a thiourea catalyst, providing access to a
variety of â-amino acid derivatives in high selectivity.
A working model for the conjugate amine addition is shown in
Figure 1. The model is consistent with the observed absolute
stereochemistry for the conjugate addition product (S)-7a and the
structural requirements for the chiral urea as shown in Chart 1.
The differential reactivity with ligands 6a and 6d suggests that
intramolecular delivery of the nucleophile is likely. Our results also
indicate that the pyrazole template plays a crucial role in providing
H-bond acceptor sites for better organization and hence higher levels
of selectivity in these organocatalysis reactions.
Table 2. Effect of Catalytic Loading and Nature of the Amine in
Additions to 5a
entry
amine R1
mol % 6a
time, h
product
% yielda
% eeb
1c
2c
3c
4c
5d
6d
Bn
Bn
Bn
Bn
Ph2CH
TBDMS
100
80
50
30
100
100
24
60
96
168
96
120
7a
7a
7a
7a
7aa
7bb
75
80
78
63
86
82
71
71
70
71
89
94
Acknowledgment. We thank NSF (Grant CHE-0316203) for
funding and L. Stanley and J. Zimmerman for helpful discussions.
Supporting Information Available: Characterization data for
compounds 5-16 and experimental procedures. This material is
a Isolated yield. b Chiral HPLC. c Reaction at room temperature. d Reac-
tion at 0 °C.
References
(1) (a) Berkessel, A.; Gro¨ger, H. Asymmetric Organocatalysis; Wiley-VCH:
Weinheim, Germany, 2005. (b) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv.
Synth. Catal. 2006, 348, 999.
Table 3. Breadth and Scope Experiments
(2) For recent reviews see: (a) Lelais, G.; MacMillan, D. W. C. Aldrichimica
Acta 2006, 39, 79. (b) List, B. Chem. Commun. 2006, 819. (c) Dalko, P.
I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
(3) For reviews see; (a) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int.
Ed. 2006, 45, 1520. (b) Connon, S. J. Chem.sEur. J. 2006, 12, 5419. (c)
Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299.
entry
R
R1
time, h
product
% yielda
% eeb
(4) For recent reviews see: (a) Liu, M.; Sibi, M. P. Tetrahedron 2002, 58,
7991. (b) Xu, L.-W.; Xia, C.-G. Eur. J. Org. Chem. 2005, 633.
(5) (a) Chen, Y. K.; Yoshida, M.; MacMillan, D. W. C. J. Am. Chem. Soc.
2006, 128, 9328. (b) Ibrahem, I.; Rios, R.; Vesely, J.; Zhao, G-L.; Cordova,
A. Chem. Commun. 2007, 849. (c) Diner, P.; Nielsen, M.; Marigo, M.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2007, 46, 1983. (d) Li, H.; Wang,
J.; Xie, H.; Zu, L.; Jiang, W.; Duesler, E. N.; Wang, W. Org. Lett. 2007,
9, 965. (e) Guerin, D. J.; Miller, S. J. J. Am Chem. Soc. 2002, 124, 2134.
(f) Takasu, K.; Maiti, S.; Ihara, M. Heterocycles 2003, 59, 51. (g) Wang,
J.; Li, H.; Zu, L.; Wang, W. Org. Lett. 2006, 8, 1391.
(6) For the addition of nonamine nucleophiles using organocatalysts see: (a)
Li, B.-J.; Jiang, L.; Liu, M.; Chen, Y.-C.; Ding, L-S.; Wu, Y. Synlett
2005, 603. (b) Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc.
2006, 128, 10354.
1
2
3
4
5
6
Me 5a
Ph2CH
Ph2CH
TBDMS
Ph2CH
Ph2CH
Ph2CH
Ph2CH
Ph2CH
PhCH2
96
96
96
168
138
216
288
24
7aa
7e
7ee
7f
7g
7h
7i
86
50
42
92
84
68
59
98
19
89
94
90
91
88
90
89
98
67
CO2Et 5e
CO2Et 5e
Et 5f
n-Pr 5g
i-Pr 5h
c-C6H11 5i
CH2OPMP 5j
Ph 5k
7
8c
9d
7j
7k
72
a Isolated yield. b Chiral HPLC. c Reaction run using 30 mol% of 6a.
(7) Sibi, M. P.; Shay, J. J.; Liu, M.; Jasperse, C. P. J. Am. Chem. Soc. 1998,
d Reaction at room temperature.
120, 6615.
(8) For the use of amino indanol-derived thiourea in catalysis see: (a) Herrera,
R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew. Chem., Int. Ed. 2005,
44, 6576. For examples of bifunctional organocatalysis see: (b) Wang,
B.; Wu, F.; Wang, Y.; Liu, X.; Deng, L. J. Am. Chem. Soc. 2007, 129,
768. (c) Inokuma, T.; Hoashi, Y.; Takemoto, Y J. Am. Chem. Soc. 2006,
128, 9413. (d) Yalalov, D. A.; Tsogoeva, S. B.; Schmatz, S. AdV. Synth.
Catal. 2006, 348, 826. (e) McCooey, S. H.; Connon, S. J. Angew. Chem.,
Int. Ed. 2005, 44, 6367. (f) Huang, H.; Jacobsen, E. N. J. Am. Chem.
Soc. 2006, 128, 7170. (g) Wang, J.; Li, H.; Zu, L.; Jiang, W.; Xie, H.;
Duan, W.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652.
(9) See Supporting Information for conditions and experimental details.
(10) We have screened other templates in conjugate amine additions. For
example, addition to oxazolidinone crotonate gave the addition product
in low yield and selectivity. These results will be reported in a full account.
in Table 2. Lowering the catalyst loading from 100 mol % to 30
mol % led to longer reaction times with no loss in enantioselectivity
for the product (entries 1-4). Changing the O-substituent on the
hydroxylamine from benzyl to benzhydryl to tert-butyldimethylsilyl
gave the products in good selectivity (entries 5 and 6).
Substrate scope in conjugate additions has been evaluated and
these results are shown in Table 3. Amine addition to crotonate 5a
was efficient yielding the product in high ee (entry 1). The fumarate
5e gave the addition product in modest yield but very high
selectivity (entries 2 and 3). Compounds with alkyl substituents
on the â-carbon were competent substrates in the conjugate addition
JA071739C
9
J. AM. CHEM. SOC. VOL. 129, NO. 26, 2007 8065