Page 9 of 11
Journal of the American Chemical Society
Supporting Information. The Supporting Information is
different chemoselectivity, the former being similar to
1
available free of charge on the ACS Publications website.
Experimental details in the preparation and characterization
of the catalysts, of the experimental procedures for the
catalytic reactions and spectroscopic data for the products.
CIFꢀfile corresponding to 1.
that attained with 6. A rationale for this effect can be
found in computational studies in the epoxidation and
cisꢀdihydroxylation reaction performed by [FeV(O)(OH)
(tpa)]2+.20 These studies indicate that epoxidation is iniꢀ
tiated by an attack of the oxo ligand over the olefin,
while synꢀdihydroxylation is initiated by an attack of the
hydroxide. In this scenario, since the Fe=O bond is
shorter than the FeꢀOH bond, it can be proposed that
epoxidation, when compared with synꢀdihydroxylation,
will require a closer approach of the substrate to the iron
center. Therefore, introduction of sterically demanding
groups in either α or β position of the pyridine, can favor
the synꢀdihydroxylation reaction. It is interesting to note
that this is actually a topological effect, meaning that
different substitution patterns or shape of the olefin subꢀ
strate must also affect their approach to the reactive ironꢀ
oxo species, translating into different [diol]/[epoxide]
ratios. Results collected in Tables 2 and 3 provide experꢀ
imental evidence in favor of this hypothesis. It is also
important to notice that this effect is independent of the
one that occurs when the catalyst changes from Class A
to Class B by weakening of the crystal field.11i It is enviꢀ
sioned that manipulation of both elements may serve in
the near future to design catalysts with improved
chemoselectivities.
2
3
4
5
6
7
8
9
AUTHOR INFORMATION
Corresponding Author
*miquel.costas@udg.edu
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
We acknowledge financial support from MINECO of Spain
(CTQ2015ꢀ70795ꢀP) and the Catalan DIUE of the Generalꢀ
itat de Catalunya (2009SGR637). M.C. thanks an ICREAꢀ
Academia award. We thank Teodor Parella for assistance in
the NMR assignment of products. We thank Anna Compaꢀ
ny, Massimo Bietti and Xavi Ribas for helpful discussions,
and L. Gómez by the GCꢀMS isotopic analyses. STR of
UdG are acknowledged by experimental support.
REFERENCES
(1) (a) Bataille, C. J. R.; Donohoe, T. J., Chem. Soc. Rev. 2011, 40, 114; (b)
Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B., Chem. Rev. 1994, 94,
2483; (c) Zaitsev, A. B.; Adolfsson, H., Synthesis 2006, 1725.
(2) (a) Shing, T. K. M.; Tam, E. K. W.; Tai, V. W. F.; Chung, I. H. F.; Jiang,
Q., Chem. Eur. J. 1996, 2, 50; (b) Shing, T. K. M.; Tai, V. M. F.; Tam, E. K.
W., Angew. Chem. Int. Ed. 1994, 33, 2312.
(3) (a) Sugimoto, H.; Kitayama, K.; Mori, S.; Itoh, S., J. Am. Chem. Soc.
2012, 134, 19270; (b) Yip, W.ꢀP.; Ho, C.ꢀM.; Zhu, N.; Lau, T.ꢀC.; Che, C.ꢀ
M., Chem. Asian J. 2008, 3, 70; (c) Yip, W. P.; Yu, W. Y.; Zhu, N. Y.; Che, C.
M., J. Am. Chem. Soc. 2005, 127, 14239.
Conclusion
In conclusion, this work describes the development of a
sterically encumbered iron catalyst that permits the high
yield, selective synꢀdihydroxylation of a broad range of
olefins at short reaction times using aqueous H2O2 as
oxidant. The combination of its excellent performance as
a synthetic tool in combination with the fact that it emꢀ
ploys water as an oxygen source can make this catalyst a
valuable tool for a convenient Oꢀlabeling of organic
substrates. For example, considering the interest of 17Oꢀ
labeled compounds in biological sciences,21 along with
the fact that H217O is by far the most economically acꢀ
cessible source of 17O, this catalyst may be of interest to
these fields. Furthermore, besides providing a novel tool
that can enable more sustainable synthetic organic
chemistry, the work discloses new mechanistic perspecꢀ
tives. The structure of this bulky catalyst is uniquely
suitable to provide details of the molecular and topologiꢀ
cal composition of the active species, which could only
be previously proposed on the basis of computational
analyses.11h, 22 The improved understanding of the cataꢀ
lytically active species that emerges from the current
work may also represent a valuable tool to rationally
design, in the nearly future, the catalytic active site in
order to pursue selectivity on the basis of structural asꢀ
pects such as molecular shape or olefin substitution
patterns.
(4) (a) Rawling, M. J.; Tomkinson, N. C. O., Org. Biomol. Chem. 2013, 11,
1434; (b) Colomer, I.; Barcelos, R. C.; Christensen, K. E.; Donohoe, T. J.,
Org. Lett. 2016, 18, 5880; (c) Griffith, J. C.; Jones, K. M.; Picon, S.;
Rawling, M. J.; Kariuki, B. M.; Campbell, M.; Tomkinson, N. C. O., J. Am.
Chem. Soc. 2010, 132, 14409; (d) Giglio, B. C.; Schmidt, V. A.; Alexanian,
E. J., J. Am. Chem. Soc. 2011, 133, 13320; (e) Schmidt, V. A.; Alexanian, E.
J., Angew. Chem. Int. Ed. 2010, 49, 4491; (f) Emmanuvel, L.; Shaikh, T. M.
A.; Sudalai, A., Org. Lett. 2005, 7, 5071; (g) Fujita, M.; Wakita, M.;
Sugimura, T., Chem. Commun. 2011, 47, 3983; (h) Kang, Y.ꢀB.; Gade, L.
H., J. Am. Chem. Soc. 2011, 133, 3658; (i) Zhong, W.; Yang, J.; Meng, X.;
Li, Z., J. Org. Chem. 2011, 76, 9997.
(5) Dash, S.; Patel, S.; Mishra, B. K., Tetrahedron 2009, 65, 707.
(6) (a) De Vos, D. E.; de Wildeman, S.; Sels, B. F.; Grobet, P. J.; Jacobs, P.
A., Angew. Chem. Int. Ed. 1999, 38, 980; (b) Saisaha, P.; Pijper, D.;
Summerren, R. P. v.; Hoen, R.; Smit, C.; Boer, J. W. d.; Hage, R.; Alsters,
P. L.; Feringa, B. L.; Browne, W. R., Org. Biomol. Chem. 2010, 8, 4444; (c)
de Boer, J. W.; Browne, W. R.; Harutyunyan, S. R.; Bini, L.; Tiemersmaꢀ
Wegman, T. D.; Alsters, P. L.; Hage, R.; Feringa, B. L., Chem. Commun.
2008, 3747; (d) de Boer, J. W.; Browne, W. R.; Brinksma, J.; Alsters, P. L.;
Hage, R.; Feringa, B. L., Inorg. Chem. 2007, 46, 6353; (e) Boer, J. W. d.;
Brinksma, J.; Browne, W. R.; Meetsma, A.; Alsters, P. L.; Hage, R.;
Feringa, B. L., J. Am. Chem. Soc. 2005, 127, 7990.
(7) Chow, T. W.ꢀS.; Liu, Y.; Che, C.ꢀM., Chem. Commun. 2011, 47, 11204.
(8) (a) Karlsson, A.; Parales, J. V.; Parales, R. E.; Gibson, D. T.; Eklund, H.;
Ramaswamy, S., Science 2003, 299, 1039; (b) Barry, S. M.; Challis, G. L.,
ACS Catal. 2013, 3, 2362; (c) Wolfe, M. D.; Parales, J. V.; Gibson, D. T.;
Lipscomb, J. D., J. Biol. Chem. 2001, 276, 1945; (d) Kovaleva, E. G.;
Lipscomb, J. D., Nat. Chem. Biol. 2008, 4, 186.
(9) Feng, Y.; Ke, C.ꢀy.; Xue, G.; Que Jr., L., Chem. Commun. 2009, 50.
(10) Chen, K.; Que Jr., L., Angew. Chem. Int. Ed. 1999, 38, 2227.
(11) (a) GarciaꢀBosch, I.; Codolà, Z.; Prat, I.; Ribas, X.; LloretꢀFillol, J.;
Costas, M., Chem. Eur. J. 2012, 18, 13269; (b) Feng, Y.; England, J.; Que
Jr., L., ACS Catal. 2011, 1, 1035; (c) Oldenburg, P. D.; Feng, Y.; Pryjomskaꢀ
ASSOCIATED CONTENT
9
ACS Paragon Plus Environment