10.1002/chem.201901566
Chemistry - A European Journal
COMMUNICATION
[3]
For intermolecular alkene anti-Markovnikov hydroamidation proceeding
via amidyl radicals, see: a) S. W. Lardy, V. A. Schmidt J. Am. Chem.
Soc. 2018, 140, 12318; b) Q. Zhu, D. E. Graff, R. R. Knowles J. Am.
Chem. Soc. 2018, 140, 741; c) J. Guin, R. Fröhlich, A. Studer, Angew.
Chem. Int. Ed. 2008, 47, 779; Angew. Chem. 2008, 120, 791; d) J. Guin,
C. Mück-Lichtenfeld, S. Grimme, A. Studer, J. Am. Chem. Soc. 2007,
129, 4498; e) J. Kemper, A. Studer, Angew. Chem. Int. Ed. 2005, 44,
4914; Angew. Chem. 2005, 117, 4993; For intermolecular alkene anti-
Markovnikov hydroamidation proceeding via alkene radical cations, see:
f) T. M. Nguyen, N. Manohar, D. A. Nicewicz, Angew. Chem. Int. Ed.
2014, 53, 6198; Angew. Chem. 2014, 126, 6312.
good yield and 93% D incorporation. Various functionalities such
as the alcohol- (4h), ether- (4i), ester- (4j), silyl ether- (4k),
ketone- (4l), imide- (4m), halide- (4n) and silane-moiety (4o) are
well tolerated to afford diverse β-deuterated Cbz-protected
amines in satisfactory yields (60-75%) and very high D content
(88-97%). Electron-rich alkenes including vinyl ethers (4p and
4q), enol esters (4r), silyl enol ethers (4s), enamides (4t) and
vinyl silanes (4u) worked smoothly, providing β-deuterated N-
protected primary amines in good yields and excellent D
incorporation (93-97%). Notably, the deuteroamidation of enol
ethers and enamides gives access to primary amines containing
a deuterium atom adjacent to a heteroatom (O or N), offering a
promising approach for the preparation of D-labelled bioactive
compounds and drug candidates with increased metabolic
stability.[9]
In conclusion, we have established a photoredox and thiol
co-catalyzed method for radical hydroamidation and
deuteroamidation of various unactivated as well as electron rich
alkenes. Diverse Cbz-protected primary amines and the
corresponding β-deuterated congeners were obtained in good
yields and high D incorporation using practical and mild
conditions. Importantly, the Cbz-group used in these
transformations is a common N-protecting group in synthetic
organic chemistry.
[4]
[5]
[6]
For representative reviews on amidyl radical chemistry, see: c) a) X.-D.
An, S. Yu, Tetrahedron Lett. 2018, 59, 1605; b) Y. Zhao, W. Xia, Chem.
Soc. Rev. 2018, 47, 2591; c) M. D. Kärkäs, ACS Catal. 2017, 7, 4999; d)
T. Xiong, Q. Zhang, Chem. Soc. Rev. 2016, 45, 3069; e) J.-R. Chen,
X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Chem. Soc. Rev. 2016, 45, 2044; f) S. Z.
Zard, Chem. Soc. Rev. 2008, 37, 1603; g) L. Stella, Angew. Chem. Int.
Ed. Engl. 1983, 22, 337; Angew. Chem. 1983, 95, 368.
For intermolecular alkene hydroamination to access tertiary amines or
anilines through a radical pathway, see: a) A. J. Musacchio, B. C.
Lainhart, X. Zhang, S. G. Naguib, T. C. Sherwood, R. R. Knowles,
Science 2017, 355, 727; b) J. Gui, C. Pan, Y. Jin, T. Qin, J. C. Lo, B. J.
Lee, S. H. Spergel, M. E. Mertzman, W. J. Pitts, T. E. La Cruz, M. A.
Schmidt, N. Darvatkar, S. W. Natarajan, P. S. Baran, Science 2015,
348, 886.
For selected examples on intramolecular radical hydroamidation, see: a)
J. Davies, T. D. Svejstrup, D. F. Reina, N. S. Sheikh, D. Leonori, J. Am.
Chem. Soc. 2016, 138, 8092; b) L. Zhu, P. Xiong, Z. Mao, Y. Wang, X.
Yan, X. Lu, H. Xu, Angew. Chem. Int. Ed. 2016, 55, 2226; Angew.
Chem. 2016, 128, 2266; c) D. C. Miller, G. C. Choi, H. S. Orbe, R. R.
Knowles, J. Am. Chem. Soc. 2015, 137, 13492; d) H. Shigehisa, N.
Koseki, N. Shimizu, M. Fujisawa, M. Niitsu, K. Hiroya, J. Am. Chem.
Soc. 2014, 136, 13534; e) X. Q. Hu, J. R. Chen, Q. Wei, F. L. Liu, Q. H.
Deng, A. M. Beauchemin, W. J. Xiao, Angew. Chem. Int. Ed. 2014, 53,
12163; Angew. Chem. 2014, 126, 12359; f) A. J. Musacchio, L. Q.
Nguyen, H. Beard, R. R. Knowles, J. Am. Chem. Soc. 2014, 136,
12217; g) T. M. Nguyen, D. A. Nicewicz, J. Am. Chem. Soc. 2013, 135,
9588.
Acknowledgements
This work was supported by the Alexander von Humboldt
Foundation (postdoctoral fellowship to H. J.) and the European
Research Council (ERC Advanced Grant agreement
No.692640).
[7]
For reviews on isotope chemistry: a) A. Michelotti, M. Roche, Synthesis
2019, 51, 1319; b) J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew.
Chem. Int. Ed. 2018, 57, 3022; Angew. Chem. 2018, 130, 3074; c) J.
Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem. Int. Ed. 2018,
57, 1758; Angew. Chem. 2018, 130, 1774; d) C. S. Elmore, R. A. Bragg,
Bioorg. Med. Chem. Lett. 2015, 25, 167; e) E. M. Simmons, J. F.
Hartwig, Angew. Chem. Int. Ed. 2012, 51, 3066; Angew. Chem. 2012,
124, 3120; f) J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew.
Chem. Int. Ed. 2007, 46, 7744; Angew. Chem. 2007, 119, 7890; g) S. E.
Scheppele, Chem. Rev. 1972, 72, 511.
Conflict of Inerest
The authors declare no conflict of interest.
Keywords: hydroamination • deuteroamination • photoredox
catalysis• thiol catalysis • primary amines
[1]
For books and reviews on metal catalysed alkene hydroamination, see:
a) A. L. Reznichenko, K. C. Hultzsch, Hydroamination of Alkenes,
Wiley-VCH, Weinheim, 2015; b) M. T. Pirnot, Y.-M. Wang, S. L.
Buchwald, Angew. Chem. Int. Ed. 2016, 55, 48; Angew. Chem. 2016,
128, 48; c) A. K. Gupta, K. L. Hull, Synlett 2015, 26, 1779; d) L. Huang,
M. Arndt, K. Gooßen, H. Heydt, L. J. Gooßen, Chem. Rev. 2015, 115,
2596; e) T. E. Mꢀller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada,
Chem. Rev. 2008, 108, 3795; f) R. Severin, S. Doye, Chem. Soc. Rev.
2007, 36, 1407; g) S. Hong, T. J. Marks, Acc. Chem. Res. 2004, 37,
673; h) T. E. Mꢀller, M. Beller, Chem. Rev. 1998, 98, 675.
[8]
[9]
For applications of isotope chemistry in drug discovery: a) C. Schmidt,
Nat. Biotechnol. 2017, 35, 493; b) A. Mullard, Nat. Rev. Drug Discov.
2016, 15, 219; c) Y. Zhu, J. Zhou, B. Jiao, ACS Med. Chem. Lett. 2013,
4, 349; d) A. Katsnelson, Nat. Med. 2013, 19, 656.
For examples on radical deuteration with D2O: a) M. Zhang, X.-A. Yuan,
C. Zhu, J. Xie, Angew. Chem. Int. Ed. 2019, 58, 312; Angew. Chem.
2019, 131, 318; b) Y. Y. Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R.
Rivera, S. L. Colletti, I. W. Davies, D. W. C. MacMillan, Science 2017,
358, 1182; c) V. Soulard, G. Villa, D. P. Vollmar, P. Renaud, J. Am.
Chem. Soc. 2018, 140, 155.
[2]
For transition metal catalyzed anti-Markovnikov hydroamination to
access tertiary amines, see: a) Y. Yang, S.-L. Shi, D. Niu, P. Liu, S. L.
Buchwald, Science 2015, 349, 62; b) S. C. Ensign, E. P. Vanable, G. D.
Kortman, L. J. Weir, K. L. Hull, J. Am. Chem. Soc. 2015, 137, 13748; c)
S. Zhu, N. Niljianskul, S. L. Buchwald, J. Am. Chem. Soc. 2013, 135,
15746; d) R. P. Rucker, A. M. Whittaker, H. Dang, G. Lalic J. Am.
Chem. Soc. 2012, 134, 6571; e) M. Utsunomiya, J. F. Hartwig, J. Am.
Chem. Soc. 2004, 126, 2702.
[10]
For representative reviews on photoredox catalysis, see: a) M. H.
Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898; b)
N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075; c) C. K.
Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322;
d) J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828; Angew.
Chem. 2012, 124, 6934; e) J. M. R. Narayanam, C. R. J. Stephenson,
Chem. Soc. Rev. 2011, 40, 102; f) T. P. Yoon, M. A. Ischay, J. Du, Nat.
Chem. 2010, 2, 527.
This article is protected by copyright. All rights reserved.