(Found: C, 52.39; H, 6.58; N, 6.11. C10H15NO3S requires C,
52.38; H, 6.61; N, 6.11%).
solution of (1R,2S)-N-(p-tolylsulfonyl)norephedrine 19b (1.22
g, 4 mmol) and triethylamine (0.05 cm3) was added a THF
solution (15 cm3) of triallylborane (5 mmol) prepared from
BF3ؒOEt2 (0.61 cm3, 5 mmol) and allylmagnesium chloride (15
mmol, 1.2 M) at 0 ЊC. The reaction mixture was stirred at room
temperature for 30 min and then heated under reflux for 1 h to
complete the formation of the oxazaborolidine ring. After cool-
ing to room temperature, the solvent was removed in vacuo and
dry ether (20 cm3) was introduced. At Ϫ78 ЊC an ethereal (2 cm3)
solution of N-silylimine 8a (0.53 g, 3 mmol) was added drop-
wise and the mixture was stirred for 3 h. The reaction was
quenched with 1 M HCl and the organic phase was separated,
from which chiral ligand 19b was recovered (93%). The aqueous
phase was then neutralized with NH4OH and extracted with
ether. The combined ether layer was dried (MgSO4) and evap-
orated. Chromatography (Et2O–hexane, 4:1) gave 1-phenylbut-
3-enamine as a colorless oil. (89%). The enantioselectivity (92%
ee) was determined by HPLC analysis using a chiral stationary-
phase column as shown before.
19c. Yield 96%; [α]D25 ϩ41.97 (c 2.33 in CHCl3); mp 111–
113 ЊC; νmax(KBr) 3527, 3342, 1535, 1417, 1356, 1317;
δH(CDCl3; 270 MHz) 0.97 (3H, d, J 6.8), 2.51 (1H, d, J 4.4),
3.70–3.90 (1H, m), 4.75–4.82 (1H, m), 5.62 (1H, d, J 8.3),
7.21–7.33 (5H, m), 7.69–7.88 (3H, m) (Found: C, 53.54; H,
3.93; N, 8.38. C15H16N2O5S requires C, 53.56; H, 3.90; N,
8.32%).
19d. Yield 94%; [α]D25 Ϫ28.64 (c 2.56 in CHCl3); mp 92 ЊC;
νmax(KBr) 3532, 3317, 1432, 1155, 1093; δH(CDCl3; 270 MHz)
0.74 (3H, d, J 6.8), 2.60 (1H, d, J 3.9), 3.47–3.59 (1H, m),
4.62–4.68 (1H, m), 5.2 (1H, d, J 8.8), 7.12–7.27 (5H, m),
7.52–7.69 (3H, m), 7.93 (1H, d, J 8.3), 8.07 (1H, d, J 8.3),
8.32 (1H, d, J 7.3), 8.62 (1H, d, J 8.8) (Found: C, 66.91; H,
5.58; N, 4.13. C19H19NO3S requires C, 66.84; H, 5.62; N,
4.10%).
19e. Yield 97%; [α]D25 ϩ14.95 (c 2.48 in CH2Cl2); mp 82 ЊC;
νmax(KBr) 3523, 3315, 1433, 1155, 1092; δH(CDCl3; 270 MHz)
0.85 (3H, d, J 6.8), 2.71 (1H, br s), 3.61–3.72 (1H, m), 4.76–
4.84 (1H, m), 5.11 (1H, d, J 8.8), 7.18–7.30 (5H, m), 7.57–
7.67 (2H, m), 7.82–7.96 (4H, m), 8.47 (1H, s) (Found: C,
66.80; H, 5.71; N, 4.11. C19H19NO3S: C, 66.84; H, 5.62; N,
4.10%).
Acknowledgements
This study was supported by a Grant-in-Aid for Scientific
Research (no. 09650955, 17650907) from the Ministry of
Education, Science, Sports and Culture, Japan (Monbusho).
20. Yield 96%; [α]D25 ϩ15.93 (c 2.48 in CHCl3); mp 93–95 ЊC;
νmax(KBr) 3504, 3257, 1591, 1457, 1324, 1160; δH(CDCl3; 270
MHz) 0.82 (3H, d, J 6.8), 2.41 (3H, s), 2.86 (1H, br s), 3.52–3.58
(1H, m), 4.79 (1H, d, J 3.4), 5.16 (1H, d, J 8.8), 7.21–7.33 (7H,
m), 7.77 (2H, d, J 8.3) (Found: C, 62.88; H, 6.21; N, 4.58.
C16H19NO3S requires C, 62.92; H, 6.28; N, 4.59%).
References
1 Reviews on allyl organometallics: (a) Y. Yamamoto and N. Asao,
Chem. Rev., 1993, 93, 2207; (b) W. R. Roush, in Comprehensive
Organic Synthesis, ed. B. M. Trost, I. Fleming and C. F.
Heathcock, Pergamon, Oxford, 1991, vol. 2, ch. 1.1. For leading
references on asymmetric allylboration of aldehydes: (c) R. W.
Hoffmann and T. Herold, Chem. Ber., 1981, 114, 375; (d) T.
Herold, U. Schrott and R. W. Hoffmann, Chem. Ber., 1981, 114,
359; (e) H. C. Brown and P. K. Jadhav, J. Org. Chem., 1984,
49, 4089; ( f ) U. S. Racherla and H. C. Brown, J. Org. Chem.,
1991, 56, 401; (g) W. R. Roush, A. E. Walts and L. K. Hoong,
J. Am. Chem. Soc., 1985, 107, 8186; (h) W. R. Roush, L. K. Hoong,
M. A. J. Palmer and J. C. Park, J. Org. Chem., 1990, 55, 4109; (i)
M. T. Reetz and T. Zierke, Chem. Ind., 1988, 663; (j) R. P. Short
and S. Masamune, J. Am. Chem. Soc., 1989, 111, 1892; (k) E. J.
Corey, C.-M. Yu and S. S. Kim, J. Am. Chem. Soc., 1989, 111,
5495.
21. Yield 87%; [α]D25 ϩ75.3 (c 2.03 in THF); mp 224–228 ЊC;
νmax(KBr) 3470, 3320, 1310, 1150; δH(CDCl3; 270 MHz) 2.29
(1H, d, J 4.9), 2.34 (3H, s), 4.55 (1H, dd, J 7.8 and 4.9), 4.99
(1H, t, J 4.6), 5.20 (1H, d, J 7.8), 6.80–7.22 (12H, m), 7.48 (2H,
d, J 8.3) (Found: C, 68.70; H, 5.75; N, 3.80. C21H21NO3S
requires C, 68.66; H, 5.72; N, 3.81%).
22. Yield 79%; [α]D25 Ϫ4.66 (c 2.13 in CHCl3); mp 102 ЊC;
νmax(KBr) 3400, 3240, 1710, 1370, 1170; δH(CDCl3; 270 MHz)
1.26 (3H, d, J 6.4), 2.17 (1H, br s), 2.42 (3H, s), 3.52 (3H, s),
3.82 (1H, dd, J 9.8 and 2.9), 4.13 (1H, br s), 5.48 (1H, d, J 9.3),
7.29 (2H, d, J 8.8), 7.73 (2H, d, J 8.3) (Found: C, 50.15; H, 5.95;
N, 4.85. C12H17NO5S: C, 50.17; H, 5.92; N, 4.88%).
2 H. C. Brown and P. V. Ramachandran, Pure Appl. Chem., 1991, 63,
General procedure for enantioselective allylboration of 10 to
N-silylimines
307.
3 H. Moser, G. Rihs and H. Santer, Z. Naturforsch., Teil B, 1982, 37,
451; J. K. Whitesell, Chem. Rev., 1989, 89, 1581; J. Seyden-Penne,
Chiral Auxiliaries and Ligands in Asymmetric Synthesis, Wiley,
New York, 1995.
4 E. F. Kleinman and R. A. Volkmann, in Comprehensive Organic
Synthesis, ed. B. M. Trost, I. Fleming and C. H. Heathcock,
Pergamon, Oxford, 1991, vol. 2, ch. 4.3.
The transformation of 8a to 9a is typical. To a solution of 10
(12 mmol), prepared from (Ϫ)-DIP-Chloride (3.8 g, 12 mmol)
and allylmagnesium chloride (12 mmol), was added dropwise a
THF (5 cm3) solution of 8a (1.42 g, 8 mmol) at Ϫ78 ЊC. The
reaction mixture was then stirred for 3 h at Ϫ78 ЊC and
quenched with 1 M HCl. The aqueous phase was separated,
and washed with ether. The aqueous phase was then neutralized
with NH4OH and extracted with ether. The combined ether
layer was dried over MgSO4 and evaporated under reduced
pressure. The residual product was purified by flash chrom-
atography (Et2O–hexane, 4:1) to yield 9a as a colorless liquid
(0.76 g, 65%), δH(CDCl3; 270 MHz) 7.34–7.22 (5H, m), 5.82–
5.68 (1H, m), 5.15–5.06 (2H, m), 3.98 (1H, dd, J 7.8 and 5.4),
2.46–2.32 (2H, m), 1.53 (2H, br s). The enantioselectivity of
64% ee was determined by HPLC analysis using a chiral
stationary-phase column (Daicel, Chiralcel OD-H; hexane–
propan-2-ol–diethylamine 90:10:0.1, flow rate 0.5 cm3
minϪ1); tR = 16.3 min (R), tR = 20.7 min (S). The absolute
configuration of the product was correlated to that described
in the literature.19
5 For a review on the asymmetric addition of nucleophiles to the
C᎐N double bond, see: E. Denmark and O. J.-C. Nicaise, Chem.
᎐
Commun., 1996, 999; D. Enders and U. Reinhold, Tetrahedron:
Asymmetry, 1997, 8, 1895.
6 H. Nakamura, K. Nakamura and Y. Yamamoto, J. Am. Chem. Soc.,
1998, 120, 4242.
7 M. Nakamura, A. Hirai and E. Nakamura, J. Am. Chem. Soc., 1996,
118, 8489.
8 I. Chataigner, F. Zammattio, J. Lebreton and J. Villiéras, Synlett,
1998, 275.
9 K. Watanabe, K. Ito and S. Itsuno, Tetrahedron: Asymmetry,
1995, 6, 1531; S. Itsuno, K. Watanabe, K. Ito, A. A. El-Shehawy and
A. A. Sarhan, Angew. Chem., Int. Ed. Engl., 1997, 36, 109.
10 K. Watanabe, S. Kuroda, A. Yokoi, K. Ito and S. Itsuno,
J. Organomet. Chem., 1999, 581, 103.
11 J. Sisko and S. Weinreb, J. Org. Chem., 1990, 55, 393.
12 G. Andersson, D. Guijarro and D. Tanner, J. Org. Chem., 1997, 62,
7364.
13 K. Soai, T. Hatanaka and T. Miyazawa, J. Chem. Soc., Chem.
Commun., 1992, 1097.
14 H. C. Brown and P. K. Jadhav, J. Am. Chem. Soc., 1983, 105, 2092;
P. K. Jadhav, K. S. Bhat, T. Perumal and H. C. Brown, J. Org.
Chem., 1986, 51, 432.
General procedure for enantioselective allylboration of
N-silylimines with chirally modified allylboron reagents
The transformation of 8a to 9a is typical. To a THF (5 cm3)
J. Chem. Soc., Perkin Trans. 1, 1999, 2011–2016
2015