Table 3 Summary of some examples of the aminolysis of epoxides with ammonia, cyclohexylamine and piperazine
GLC Conversiona (reaction time) with
NH3
Cyclohexylamine
Piperazine
% (h)
ratio A:Bb
Entry
Epoxide
% (h)
ratio A:Bb
% (h)
ratio A:Bb
O
Riii
Riv
Ri
Rii
Ri
H
Cl
OCH3
NO2
OCH3
OCH3
OCH3
OCH3
Rii
H
H
H
H
OCH3
H
OCH3
OCH3
Riii
H
H
H
H
H
H
H
CH3
Riv
Ph
Ph
Ph
Ph
1
2
3
4
5
6
7
8
97 (30)
95 (20)
c
98 (44)
c
99 (6)
99 (6)
c
1:1c
1:1c
99 (48) 1:2c
99 (7)
>99 (16)
99 (6)
2:1c
1:2
H
CH3
CH3
CH3
99 (8)
<1:10c
<1:10c
99 (20) 1:9c
17 (72)
d
d
99 (72) ~1:5
—
62 (72)
—
O
9
98 (24) >10:1
All β-hydroxyamines were satisfactorily identified by their 1H, 13C NMR as well as their high resolution mass spectra. Where possible the obtained
NMR spectra were compared with literature data. a For reaction conditions see Scheme 4. b The constitution of the two regioisomers A and B is given
in Scheme 4. c Isolated as racemic erythro/threo mixtures. d Ratio not determined.
Ann. Chem., 1973, 227; (e) W. T. Ford, in ACS Symposium Series
308: Polymeric Reagents and Catalysts, ed. W. T. Ford, ACS
Washington, 1986, p. 155.
3 (a) B. Hinzen and S. V. Ley, J. Chem. Soc., Perkin Trans. 1, 1997,
1907; (b) B. Hinzen and S. V. Ley, J. Chem. Soc., Perkin Trans. 1,
1998, 1; (c) B. Hinzen, R. Lenz and S. V. Ley, Synthesis, 1998, in the
press.
In summary we have elaborated an efficient procedure for the
clean preparation of β-hydroxyamines starting from alcohols
using polymer supported reagents in combination with solution
chemistry. Throughout the whole process work-up is achieved
by mere filtration and evaporation. We believe this work,
together with the preceding two communications, further illus-
trates the power of using polymer bound reagents to effect
clean multi-step organic synthesis for potential application in
combinatorial chemistry programmes.
4 R. Curci, M. Fiorentino, L. Troisi, J. O. Edwards and R. H. Pater,
J. Org. Chem., 1980, 45, 4758; W. Adam, R. Curci and J. O. Edwards,
Acc. Chem. Res., 1989, 22, 205; W. Adam, J. Bialas and
L. Hadjiarapoglou, Chem. Ber., 1991, 124, 2377.
5 I. Hughes, Tetrahedron Lett., 1996, 37, 7595.
6 M. Bernard and W. T. Ford, J. Org. Chem., 1983, 48, 326.
7 For homogenous Wittig reactions see e.g. H. J. Bestmann and
O. Vostrowsky, in Topics in Current Chemistry, Wittig Chemistry, ed.
F. L. Boschke, Springer-Verlag, Berlin, Heidelberg, New York, 1983,
vol. 109, p. 85.
8 Deiodination is also observed in homogenous Wittig reactions with
iodomethyltriphenylphosphonium iodide: D. Seyferth, J. K. Heeren,
G. Singh, S. O. Grim and W. B. Hughes, J. Organomet. Chem., 1966,
5, 267; G. Stork and K. Zhao, Tetrahedron Lett., 1989, 30, 2173;
H. J. Bestmann, H. C. Rippel and R. Dostalek, Tetrahedron Lett.,
1989, 30, 5261.
Acknowledgements
We are grateful to the Swiss National Science Foundation
(Fellowship to M. H. B.), the BP endowment and the Novartis
Research Fellowship (to S. V. L.) for financial support.
References
1 (a) F. Haunert, M. H. Bolli, B. Hinzen and S. V. Ley, J. Chem. Soc.,
Perkin Trans. 1, 1998, 2235; (b) S. V. Ley, M. H. Bolli, B. Hinzen,
A.-G. Gervois and B. J. Hall, J. Chem. Soc., Perkin Trans. 1, 1998,
2239.
2 (a) F. Camps, J. Castells, J. Font and F. Vela, Tetrahedron Lett., 1971,
1715; (b) S. C. McKinley and J. W. Rakshys, jun., J. Chem. Soc., Chem.
Commun., 1972, 134; (c) W. Heitz and R. Michels, Angew. Chem., Int.
Ed. Engl., 1972, 11, 298; (d) W. Heitz and R. Michels, Liebigs
Paper 8/03612H
Received 14th May 1998
Accepted 16th June 1998
2246
J. Chem. Soc., Perkin Trans. 1, 1998