Chemistry of Phosphorylmethyl Isocyanides, 6
after three crystallizations from EtOH, m.p. 173°C. Ϫ 1H NMR: and 1b (1:3). The mixture was separated by column chromatogra-
FULL PAPER
δ ϭ 0.76 (s, 3 H, 5-CH3); 0.98 (s, 3 H, 5-CH3); 3.83 (dd, JAB
11.0 Hz, JPH ϭ 22.0 Hz, 1 H, 6-Heq); 3.96 (dd, J ϭ 6.0 Hz, JPH
ϭ
phy (SiO2, CHCl3/hexane, 1:2) and the first fraction (Rf ϭ 0.6)
gave, after three crystallizations from hexane/Et2O (2:1), solid
ϭ
12.6 Hz, 2 H, CH2); 4.42 (dd, JAB ϭ 11.0 Hz, JPH ϭ 2.3 Hz, 1 H,
(2R,4S)-1b (160 mg, 60%), m.p. 155°C, which was pure according
6-Hax); 5.41 (d, JPH ϭ 3.0 Hz, 4-H); 7.06 (br. s, 1 H, NH); 7.20 Ϫ to NMR. Ϫ [α]578 ϭ Ϫ38.2 (c ϭ 0.5 in CHCl3). Ϫ 1H NMR
7.35 (m, 5 H, Ar H); 8.25 (s, 1 H, CHO). Ϫ 13C NMR: δ ϭ 17.0 (CDCl3): δ ϭ 0.87 (s, 3 H, CH3); 1.16 (s, 3 H, CH3); 3.99 (AAЈX,
and 21.2 (5-CH3); 33.2 (JPC ϭ 160 Hz, CH2); 36.2 (C5); 75.4 (C6); JPH ϭ 16 Hz, JAAЈ ϭ 16.8 Hz, 2 H, CH2); 4.24 (dd, JAB ϭ 11 Hz,
20
84.5 (C4); 127.1, 127.8, 128.5, 135.0 (Ar C); 161.1 (CHO). Ϫ 31P JPH ϭ 18.8 Hz, 1 H, 6-Heq); 4.71 (d, JAB ϭ 11 Hz, 1 H, 6-Hax);
˜
NMR δ ϭ 21.9. Ϫ IR: ν ϭ 3263 cmϪ1 (NH), 1682 (CϭO), 1282 5.68 (dd, JPH ϭ 0.7 Hz, 1 H, 4-H); 7.36 (s, 5 H, Ar H). Ϫ 13C
(PϭO), 1040 (PϪO). Ϫ C13H18NO4P (283): calcd. C 55.12, H 6.40, NMR (CDCl3): δ ϭ 17.0 (CH3); 21.0 (CH3); 36.8 (C5); 37.7 (CH2);
N 4.94, P 10.93; found C 54.80, H 6.62, N 4.80, P 10.68. Ϫ HRMS: 81.7 (C6); 91.9 (C4); 127.1, 128.0, 128.8, 134.9 (Ar C); 162.0 (Nϭ
˜
calcd. 283.097; found 283.097. Ϫ The same procedure was per-
C). Ϫ 31P NMR (CDCl3): δ ϭ 2.3. Ϫ IR: ν ϭ 2153 cmϪ1 (NϭC);
formed with (±)-6a (18.1 g, 71 mmol) to give 10.2 g of (±)-7 (36 1291/1278 (PϭO).
mmol, 51%).
Compound (2S,4S)-(ϩ)-7 was prepared as described above for
[1]
[1a]
Some leading reviews are:
I. Ugi, Isonitrile Chemistry, Aca-
[1b]
(±)-7 from (2S,4S)-(ϩ)-6a (4.3 g, 17 mmol) in 77% yield (3.7 g, 13
demic Press, New York, 1971. Ϫ
D. Hoppe, Angew. Chem.
[1c]
20
1974, 86, 878; Angew. Chem. Int. Ed. Engl. 1974, 13, 789. Ϫ
C. Grundmann in Methoden Org. Chem. (Houben-Weyl) 1985,
mmol), m.p. 141Ϫ142°C. Ϫ [α]578 ϭ ϩ20 (c ϭ 0.5, CHCl3).
vol. E5, part 2, p. 1611Ϫ1658. Ϫ [1d] S. Marcaccini, T. Torroba,
cis-2-(Isocyanomethyl)-5,5-dimethyl-2-oxo-4-phenyl-1,3,2-di-
oxaphosphorinane [(±)-1a and (2S,4S)-(Ϫ) 1a]: Compound (±)-1a: A
solution of POCl3 (2.4 ml, 26.0 mmol) in CH2Cl2 (10 ml) was added
dropwise to a stirred solution of (±)-7 (6.38 g, 22.5 mmol) and
iPr2NH (9.5 ml, 67.5 mmol) in CH2Cl2 (130 ml) at Ϫ20°C and the
reaction mixture was stirred for 2.5 h at 0°C. Aqueous NaHCO3
(20 g in 150 ml of H2O) was added carefully (evolution of CO2)
and the mixture was stirred for 20 min. The two layers were sepa-
rated and the aqueous layer was extracted with CH2Cl2 (3 ϫ 30
ml). The combined organic layers were dried (MgSO4) and concen-
trated under reduced pressure to give 5.8 g of crude (±)-1a, as a
yellow solid. Column chromatography (SiO2, AcOEt/hexane, 2:1)
gave 4.52 g (17.0 mmol, 69%) of analytically pure (±)-1a, as
transparant needles, m.p. 145°C. Ϫ 1H NMR (CDCl3): δ ϭ 0.82
[1e]
Org. Prep. Proced. Int. 1993, 25, 141. Ϫ
(C2H5O)2-
P(O)CH2NϭC: A. M. van Leusen, D. van Leusen in Encyclo-
pedia of Reagents for Organic Synthesis (Ed.: L. A. Paquette),
vol. 3, Wiley, New York, 1995, p. 1820. Ϫ [1f] C2H5O2CCH2Nϭ
C: K. Matsumoto, M. Suzuki in Encyclopedia of Reagents for
Organic Synthesis (Ed.: L. A. Paquette), vol. 4, Wiley, New
[1g]
York, 1995, p. 2474. Ϫ
4-CH3C6H4SCH2NϭC: A. M. van
Leusen, D. van Leusen in Encyclopedia of Reagents for Organic
Synthesis (Ed.: L. A. Paquette), vol. 7, Wiley, New York, 1995,
[1h]
p.4979. Ϫ
4-CH3C6H4SO2CH2NϭC: A. M. van Leusen, D.
van Leusen in Encyclopedia of Reagents for Organic Synthesis
(Ed.: L. A. Paquette), vol. 7, Wiley, New York, 1995, p.4973. Ϫ
[1i]
D. van Leusen, A. M. van Leusen, Org. React., in press.
[2]
I. Ugi, Angew. Chem. 1982, 94, 826Ϫ835; Angew. Chem. Int Ed.
Engl. 1982, 21, 810Ϫ819.
[3]
[4]
U. Schöllkopf, Pure Appl. Chem. 1979, 51, 1347.
[4a] J. P. G. Versleijen, P. M. Faber, H. H. Bodewes, A. H. Braker,
(s, 3 H, CH3); 1.15 (s, 3 H, CH3); 3.99 (dd, JAB ϭ 11 Hz, JPH
ϭ
D. van Leusen, A. M. van Leusen, Tetrahedron Lett. 1995, 36,
23 Hz, 1 H, 6-Heq); 4.01 (d, JPH ϭ 16 Hz, 2 H, CH2); 4.56 (dd,
JAB ϭ 11 Hz, JPH ϭ 1.2 Hz, 1 H, 6-Hax); 5.52 (d, JPH ϭ 1.4 Hz, 1
H, 4-H); 7.36 (s, 5 H, Ar H). Ϫ 13C NMR: δ ϭ 17.2 and 21.3 (5-
CH3); 36.3 (C5); 37.3 (JPC ϭ 157 Hz, CH2); 75.8 (C6); 85.2 (C4);
[4b]
2109Ϫ2112. Ϫ
A. R. Katritzky, D. Cheng, R. P. Musgrave,
Heterocycles 1997, 44, 67Ϫ70.
[5]
[6]
M. Sawamura, Y. Ito, Chem. Rev. 1992, 92, 857Ϫ871.
´
A. Solladie-Cavallo, S. Quazzotti, S. Colonna, A. Manfredi, J.
Fischer, A. DeCian, Tetrahedron: Asymmetry 1992, 3, 287.
127.1, 127.8, 128.5, 135.0 (Ar C); 161.2 (NϭC). Ϫ 31P NMR
[7] [7a]
D. van Leusen, P. H. F. M. Rouwette, A. M. van Leusen,.
˜
(CDCl3): δ ϭ 13.9. Ϫ IR: ν ϭ 2156 cmϪ1 (NϭC); 1253/1244 (Pϭ
[7b]
J. Org. Chem. 1981, 46, 5159Ϫ5163. Ϫ
F. J. A. Hundscheid,
V. K. Tandon, P. H. F. M. Rouwette, A. M. van Leusen, Tetra-
hedron 1987, 21, 5073Ϫ5088.
O); 1044 (PϪO). Ϫ C13H16NO3P (265): calcd. C 58.87, H 6.08, N
5.28, P 11.68; found C 58.65, H 6.18, N 5.26, P 11.62. Ϫ HRMS:
calcd. 265.950; found 265.951. Ϫ X-ray structure (Figure 1): Mr ϭ
265.25, monoclinic, P21/c, a ϭ 7.687(1), b ϭ 34.798(2), c ϭ
[8] [8a]
B. Langström, B. Stridsberg, G. Bergson, Chem. Scr.
[8b]
1978؊9, 13, 49Ϫ51. Ϫ
1991, 3, 331Ϫ340.
A. Togni, S. D. Pastor, Chirality
˚
˚
[9]
10.725(1) A, β ϭ 105.409(4)°, V ϭ 2765.7(4) A3, Z ϭ 8, Dx ϭ 1.274
J. S. Tang, J. G. Verkade, J. Org. Chem. 1996, 61, 8750Ϫ8754.
W. ten Hoeve, H. Wynberg, J. Org. Chem. 1985, 50, 4508Ϫ4514.
U. Schöllkopf, R. Schröder, D. Stafforst, Justus Liebigs Ann.
Chem. 1974, 44Ϫ53.
˚
[10]
[11]
g cmϪ3, (Mo-Kα) ϭ 0.71073 A, µ ϭ 1.99 cmϪ1, F(000) ϭ 1120,
T ϭ 295 K, RF ϭ 0.059 for 3714 unique observed reflections with
I Ն 2.5 σ(I) and 453 parameters. Two crystallographically indepen-
dent molecules are present in the asymmetric unit.
[12]
R. Ebens, R. M. Kellogg, Recl. Trav. Chim. Pays-Bas 1990,
109, 552Ϫ560.
[13] [13a]
W. G. Bentrude, H.-W. Tan, K. C. Yee, J. Am. Chem. Soc.
[13b]
Compound (2S,4S)-(Ϫ)-1a was prepared as described above for
(±)-1a from (2S,4S)-(ϩ)-7 (3.5 g, 12.4 mmol) in 31% yield (1.0 g,
1975, 97, 573Ϫ582. Ϫ
3193Ϫ3202.
N. S. Zefirov, Tetrahedron 1977, 33,
[14]
D. W. White, R. D. Bertrand, G. K. McEwen, J. G. Verkade, J.
Am. Chem. Soc. 1970, 92, 7125Ϫ7135.
20
4.0 mmol), m.p. 133°C. Ϫ [α]578 ϭ Ϫ46.4 (c ϭ 0.5, CHCl3). Ϫ
[15] [15a]
X-ray structure (Figure 2): Mr ϭ 265.25, monoclinic, P212121, a ϭ
R. S. Edmundson, O. Johnson, D. W. Jones, J. Chem Soc.,
˚
˚
5.646(1), b ϭ 9.354(1), c ϭ 25.105(1) A, V ϭ 1325.9(3) A3, Z ϭ 4,
[15b]
Perkin Trans. 2 1985, 69Ϫ75. Ϫ
C. L. Bodkin, P. Simpson,
˚
J. Chem. Soc. B 1971, 1136Ϫ1141. Ϫ [15c] W. G. Bentrude, J. H.
Hargis, J. Am. Chem. Soc. 1970, 92, 7136Ϫ7144.
C. L. Bodkin, P. Simpson, J. Chem. Soc., Perkin Trans. 2 1973,
2, 676Ϫ681.
Dx ϭ 1.329 g cmϪ3, (Mo-Kα) ϭ 0.71073 A, µ ϭ 2.07 cmϪ1
,
F(000) ϭ 560, T ϭ 130 K, RF ϭ 0.031 for 1611 unique observed
reflections with I Ն 2.5 σ(I) and 229 parameters. The absolute con-
figuration is determined by refinement of the Flack parameter.
[16]
[17] [17a] W. G. Bentrude, W. N. Setzer in Phosphorus-31 NMR Spec-
troscopy in Stereochemical Analysis, (Eds.: J. G. Verkade, L. D.
[17b]
trans-2-(Isocyanomethyl)-5,5-dimethyl-2-oxo-4-phenyl-1,3,2-di-
oxaphosphorinane [(2R,4S)-(Ϫ)-1b]: A solution of (2S,4S)-(Ϫ)-1a
(265 mg, 1.00 mmol) and KF (25 mg, 0.4 mmol) in DMSO (4 ml)
was heated at 100°C for 4 h. After cooling to room temp., H2O (20
ml) was added and the mixture was cooled in ice. The solid was
collected and dried to give 250 mg (94%) of a solid mixture of 1a
Quin), VCH, New York, 1987, p. 365Ϫ389. Ϫ
W. G. Ben-
trude in Phosphorus-31 NMR Spectral Properties in Compound
Characterization and Structural Analysis (Eds.: L. D. Quin, J.
G. Verkade), VCH, New York, 1994, p.41.
[18]
B. E. Maryanoff, R. O. Hutchins, C. A. Maryanoff, Top. Stereo-
chem. 1979, 11, 187Ϫ318.
[19] [19a]
A. F. Torralba, T. C. Meyers, J. Org. Chem. 1957, 22,
Eur. J. Org. Chem. 1998, 1511Ϫ1516
1515