Published on Web 03/22/2006
Metal Supported on Dendronized Magnetic Nanoparticles:
Highly Selective Hydroformylation Catalysts
Raed Abu-Reziq,† Howard Alper,*,† Dashan Wang,‡ and Michael L. Post‡
Contribution from the Centre for Catalysis Research and InnoVation, UniVersity of Ottawa,
10 Marie Curie, Ottawa, Ontario, Canada K1N 6N5, and Institute for Chemical Process and
EnVironmental Technology, National Research Council of Canada, 1200 Montreal Road,
Ottawa, Ontario, Canada K1A OR6
Received January 16, 2006; E-mail: howard.alper@uottawa.ca
Abstract: A method for homogenizing heterogeneous catalyst is described. The method is based on growing
polyaminoamido (PAMAM) dendrons on silica-coated magnetic nanoparticles. After the dendronizing
process, the silica-coated magnetic nanoparticles are more stable and more soluble in organic solvents.
The dendronized particles are phosphonated, complexed with [Rh(COD)Cl]2, and applied in catalytic
hydroformylation reactions. These new catalysts are proven to be highly selective and reactive.
have been investigated intensively by our group6 and others7-10
and applied to several catalytic organic transformations. These
Introduction
During the past two decades, a great deal of attention has
been paid to developing methods for heterogenizing homoge-
neous catalysts in order to combine the advantages of both
homogeneous and heterogeneous catalysis.1 Among these
methods, the binding of catalysts to organic polymer solids2 or
inorganic solids3 is widely used. Although the heterogenized
catalysts can be recycled and easily separated from the reaction
mixtures, they are significantly less reactive and selective than
their homogeneous counterparts. For this reason, there is a need
to find new methods and strategies in order to overcome these
limitations.
Dendrimers, a class of macromolecules with special properties
and functions, have been utilized for several applications4
including homogeneous catalysis.5 Interestingly, in many cases,
the soluble dendritic catalysts were found to be more efficient
or selective than the traditional analogues of metal complexes.
In recent years, dendrimers immobilized on silica or polymers
new catalytic materials are sometimes highly efficient in terms
of reactivity and selectivity and are easily recyclable.
Magnetic nanoparticles that can be magnetized in the presence
of an external magnet have been studied extensively for various
biological applications such as magnetic resonance imaging,11
drug delivery,12 biomolecular sensors,13 bioseparation,14 and
(5) (a) Astruc, D.; Heuze, K.; Gatard, S.; Mery, D.; Nlate, S.; Plault, L. AdV.
Synth. Catal. 2005, 347, 329-338. (b) Dahan, A.; Portnoy, M. J. Polym.
Sci., Part A: Polym. Chem. 2005, 43, 235-262. (c) Reek, J. N. H.; de
Groot, D.; Oosterom, G. E.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Compt. Rend. Chim. 2003, 6, 1061-1077. (d) van Heerbeek, R.; Kamer,
P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Chem. ReV. 2002, 102,
3717-3756. (e) Astruc, D.; Chardac, F. Chem. ReV. 2001, 101, 2991-
3023.
(6) (a) Reynhardt, J. P. K.; Yang, Y.; Sayari, A.; Alper, H. AdV. Funct. Mater.
2005, 15, 1641-1646. (b) Lu, S. M.; Alper, H. J. Am. Chem. Soc. 2005,
127, 14776-14784. (c) Reynhardt, J. P. K.; Yang, Y.; Sayari, A.; Alper,
H. AdV. Synth. Catal. 2005, 347, 1379-1388. (d) Touzani, R.; Alper, H.
J. Mol. Catal. A: Chem. 2005, 227, 197-207. (e) Reynhardt, J. P. K.;
Yang, Y.; Sayari, A.; Alper, H. Chem. Mater. 2004, 16, 4095-4102. (f)
Zweni, P.; Alper, H. AdV. Synth. Catal. 2004, 346, 849-854. (g) Lu, S.
M.; Alper, H. J. Org. Chem. 2004, 69, 3558-3561. (h) Lu, S. M.; Alper,
H. J. Am. Chem. Soc. 2003, 125, 13126-13131. (i) Reynhardt, J. P. K.;
Alper, H. J. Org. Chem. 2003, 68, 8353-8360. (j) Antebi, S.; Arya, P.;
Manzer, L. E.; Alper, H. J. Org. Chem. 2002, 67, 6623-6631. (k) Arya,
P.; Panda, G.; Rao, N. V.; Alper, H.; Bourque, S. C.; Manzer, L. E. J. Am.
Chem. Soc. 2001, 123, 2889-2890. (l) Bourque, S. C.; Alper, H.; Manzer,
L. E.; Arya, P. J. Am. Chem. Soc. 2000, 122, 956-957.
† University of Ottawa.
‡ National Research Council of Canada.
(1) (a) Bhanage, B. M.; Hrai, M. Catal. ReV. Sci. Eng. 2001, 43, 315-344.
(b) Biffis, A.; Zecca, M.; Basato, M. J. Mol. Catal. A: Chem. 2001, 173,
249-274. (c) Choplin, A.; Quignard, F. Coord. Chem. ReV. 1998, 178-
180, 1679-1702. (d) Chen, J.; Alper, H. J. Am. Chem. Soc. 1997, 119,
893-895. (e) Nait Ajjou, A.; Alper, H. J. Am. Chem. Soc. 1998, 120, 1466-
1468.
(7) (a) Dahan, A.; Portnoy, M. Org. Lett. 2003, 5, 1197-1200. (b) Dahan, A.;
Portnoy, M. Chem. Commun. 2002, 2700-2701.
(2) (a) Leadbeater, N. E.; Marco, M. Chem. ReV. 2002, 102, 3217-3274. (b)
McNamara, C. A.; Dixon, M. J.; Bradley, M. Chem. ReV. 2002, 102, 3275-
3300. (c) Pittman, C. U., Jr. In ComprehensiVe Organometallic Chemistry;
G. Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford,
1982; Vol. 8, pp 553-613.
(3) (a) Song, C. E.; Lee, S. G. Chem. ReV. 2002, 102, 3495-3524. (b) Iwasawa,
Y. In Tailored Metal Catalysis; Ugo, R., James, B. R., Eds.; Reidel:
Dordrecht, 1986.
(8) Chung, Y.-M.; Rhee, H.-K. Chem. Commun. 2002, 238-239.
(9) (a) Sellner, H.; Rheiner, P. B.; Seebach, D. HelV. Chem. Acta 2002, 85,
352-387. (b) Sellner, H.; Seebach, D. Angew. Chem., Int. Ed. 1999, 38,
1918-1920. (c) Sellner, H.; Karjalainen, J. K.; Seebach, D. Chem.sEur.
J. 2001, 7, 2873-2887.
(10) Reetz, M. T.; Giebel, D. Angew. Chem., Int. Ed. 2000, 39, 2498-2501
(11) Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. J. Phys. D: Appl.
Phys. 2003, 36, R167-R181.
(4) (a) Crespo, L.; Sanclimens, G.; Pons, M.; Giralt, E.; Royo, M.; Albericio,
F. Chem. ReV. 2005, 105, 1663-1681. (b) Gillies, E. R.; Frechet, J. M. J.
Drug DiscoVery Today 2005, 10, 35-43. (c) Boas, U.; Heegaard, P. M.
H. Chem. Soc. ReV. 2004, 33, 43-63. (d) Grayson, S. M.; Frechet, J. M.
J. Chem. ReV. 2001, 101, 3819-3867. (e) Dykes, G. M. J. Chem. Technol.
Biotechnol. 2001, 76, 903-918. (f) Tully, D. C.; Frechet, J. M. J. Chem.
Commun. 2001, 14, 1229-1239. (g) Newkome, G. R.; Moorefield, C. N.;
Vogtle, F. Dendritic Molecules: Concepts, Synthesis, PerspectiVes; VCH:
Weinheim, Germany, 1996.
(12) (a) Gupta, A. K.; Curtis, A. S. G. J. Mater. Sci. Mater. Med. 2004, 15,
493-496. (b) Neuberger, T.; Schoepf, B.; Hofmann, H.; Hofmann, M.;
von Rechenberg, B. J. Magn. Magn. Mater. 2005, 293, 483-496.
(13) (a) Perez, J. M.; Simeone, F. J.; Saeki, Y.; Josephson, L.; Weissleder, R.
J. Am. Chem. Soc. 2003, 125, 10192-10193. (b) Graham, D. L.; Ferreira,
H. A.; Freitas, P. P. Trends Biotechnol. 2004, 22, 455-462.
(14) (a) Wang, D.; He, J.; Rosenzweig, N.; Rosenzweig, Z. Nano Lett. 2004, 4,
409-413. (b) Xu, C.; Xu, K.; Gu, H.; Zheng, R.; Liu, H.; Zhang, X.; Guo,
Z.; Xu, B. J. Am. Chem. Soc. 2004, 126, 9938-9939.
9
10.1021/ja060140u CCC: $33.50 © 2006 American Chemical Society
J. AM. CHEM. SOC. 2006, 128, 5279-5282
5279