1048
S.-H. Yoon et al./Bioorg. Med. Chem. 6 (1998) 1043±1049
CHCl3); IR (KBr) 3430 (±OH), 2930, 2850 1464,
1
178.9 (C1); Anal. Calcd for C17H32O3: C, 71.79; H,
11.34. Found: C, 71.61; H, 11.43.
1379 cm 1; H NMR (CDCl3) d 0.91 (t, 3H, J=6.9 Hz,
±CH3), 1.22±1.51 (m, 22H, (CH2)11±), 1.33 (s, 3H, aceto-
nide), 1.62 (s, 3H, acetonide), 1.81 (d, 1H, J=4.4 Hz,
±OH), 3.92 (m, 1H, C4-H), 4.11 (dd, 1H, J=3.9, 7.9 Hz,
C3-H), 4.52 (d, 1H, J=3.9 Hz, C2-H), 5.91 (d, 1H,
J=3.9 Hz, C1-H); 13C NMR (CDCl3) d 14.3, 22.9, 26,2,
26.4, 27.1, 29.5, 29.6, 32.1, 33.9, 79.1 (C4), 87.6 (C2),
87.9 (C3), 105.5 (C1), 112.7 (C7).
5,6-Dideoxy-1,2-isopropylidene-5-C-(n-undecanyl)-ꢀ-D-
gulofuranose (10). 9 (400 mg 1.2 mmol) was subjected to
the same reaction described for the synthesis of 7. 10
(300 mg, 76%) was obtained as a white solid: mp 52 ꢀC;
[a]20d= 2.5ꢀ (c=0.65, CHCl3); IR (KBr) 3472 (±OH),
1
2930, 2850 1464, 1379 cm 1; H NMR (CDCl3) d 0.90
(t, 3H, J=6.8 Hz, ±CH3), 1.24±1.49 (m, 22H, ±(CH2)11±),
1.41 (s, 3H, acetonide), 1.62 (s, 3H, acetonide), 2.57 (d,
1H, J=7.4 Hz, ±OH), 3.86 (m, 1H, C4-H), 4.18 (dd, 1H,
J=5.7, 11.8 Hz, C3-H), 4.62 (dd, 1H, J=4.2, 5.9 Hz, C2-
H), 5.66 (d, 1H, J=4.2 Hz, C1-H); 13C NMR (CDCl3) d
14.1, 22.6, 26.1, 26.9, 29.1, 29.6, 32.9, 70.2 (C4), 80.2
(C2), 82.5 (C3), 101.5 (C1), 111.5 (C7).
(2S,3S)-2-Benzyloxy-3-formyloxy-1-pentadecanal (4c).
The same sequence of the reactions described for the
synthesis of 4b was applied. Benzylation of 9 (200 mg,
0.61 mmol) followed by the removal of the iso-
propylidene group gave the 1,2-O-diol compound
(130 mg, 62%) as a white solid: mp 53±54 ꢀC; IR (KBr)
1
3370, 3030, 29200, 2850, 1100 cm 1; H NMR (CDCl3)
d 0.88 (t, 3H, J=6.8 Hz, ±CH3), 1.12±1.57 (m, 22H,
±(CH2)11±), 1.62 (m, 1H, ±OH), 3.81 (m, 1H, C3-H), 4.21
(m, 2H, C4-H), 4.61±4.81 (m, 3H, ±OCH2 and C2-H),
5.31 (m, 1H, C1-H), 7.33 (s, 5H, phenyl). Oxidative
cleavage reaction of the 1,2-O-diol compound aorded
4c (100 mg, 58%) as a slightly yellow oil: [a]20d= 24.3ꢀ
(2R,3S)-2-Benzyloxy-3-formyloxy-1-pentadecanal (4d).
The same sequence of the reactions described for the
synthesis of 4b was applied. Benzylation of 10 (300 mg,
0.91 mmol) followed by the removal of the iso-
propylidene group gave 1,2-O-diol compound (130 mg,
56%) as a white solid: IR (neat) 3350, 3060, 2920, 2850,
1
(c=39.1, CHCl3); IR (neat) 3050, 2960, 2830, 1780
1
1100 cm 1; H NMR (CDCl3) d 0.90 (t, 3H, J=6.8 Hz,
(C=O) cm
;
1H NMR (CDCl3) d 0.91 (t, 3H,
±CH3), 1.14±1.60 (m, 22H, ±(CH2)11±), 1.65 (m, 1H, ±OH),
3.91 (m, 1H, C3-H), 4.15 (m, 2H, C4-H), 4.61±4.83 (m,
3H, ±OCH2 and C2-H), 5.08 (m, 1H, C1-H), 7.33 (s, 5H,
-phenyl). Oxidative cleavage reaction of the 1,2-O-diol
compound aorded 4d (160 mg, 47%) as a slightly yel-
low oil: [a]20d=+20.2ꢀ (c=10.0, CHCl3); IR (neat)
3050, 2920, 2846, 1739 (C=O) cm 1; 1H NMR (CDCl3)
d 0.92 (t, 3H, J=6.9 Hz, ±CH3), 1.25 (s, 20H, ±(CH2)10±),
1.75 (m, 2H, ±CH2), 3.88 (dd, 1H, J=1.6, 3.6 Hz, C2-H),
4.53±4.82 (dd, 2H, J=11.8, 49.6 Hz, ±OCH2), 5.28 (m,
1H, C3-H), 7.35 (s, 5H, -phenyl), 8.05 (s, 1H, ±OCHO),
9.66 (d, 1H, J=1.4 Hz, ±CHO); 13C NMR (CDCl3) d
20.9, 25.4, 29.5, 29.7, 30.3, 32.1, 72.7 (C3), 76.1 (±OCH2),
84.0 (C2), 128.5, 128.8, 129.0, 129.9, 160.3 (±OCHO),
201.2 (±CHO).
J=6.9 Hz, ±CH3), 1.26 (s, 20H, ±(CH2)10±), 1.68 (m,
2H, ±CH2), 3.88 (d, 1H, J=3.1 Hz, C2-H), 4,65 (s, 2H,
±OCH2), 5.39 (m, 1H, C3-H), 7.35 (s, 5H, -phenyl), 8.05
(s, 1H, ±OCHO), 9.66 (d, 1H, J=1.8 Hz, ±CHO); 13C
NMR (CDCl3) d 15.5, 24.1, 26.5, 30.7, 31.4, 33.3, 73.8
(C3), 74.8 (±OCH2), 84.1 (C2), 129.5, 129.7, 130.0, 13
7.9, 162.1 (±OCHO), 202.4 (±CHO).
Ethyl (4R,5S)-4-benzyloxy-5-hydroxy-(2E)-heptadecan-
oate (5c). 4c (300 mg, 0.91 mmol) was subjected to the
same reaction described for the synthesis of 5a. 5c
(240 mg, 63%) was obtained as a slightly yellow oil: IR
1
3470 ( OH), 3030, 2920, 2860, 1721 (C=O) cm 1; H
NMR (CDCl3) 0.89 (t, 3H, J=6.8 Hz, ±CH3), 1.21±1.52
(m, 25H, ±(CH2)11± and ±CH3), 2.11 (d, 1H, J=3.1 Hz,
±OH), 3.81 (m, 1H, C5-H), 3.93 (m, 1H, C4-H), 4.21 (q,
2H, J=4.6 Hz, ±CO2CH2±), 4.37±4.72 (dd, 2H, J=11.7,
50.3 Hz, ±OCH2), 6.08 (d, 1H, J=14.8 Hz, C2-H), 6.96
(dd, 1H, J=14.8, 6.9 Hz, C3-H), 7.36 (s, 5H, -phenyl).
Ethyl (4S,5S)-4-benzyloxy-5-hydroxy-(2E)-heptadecan-
oate (5d). 4d (200 mg, 0.53 mmol) was subjected to the
same reaction described for the synthesis of 5b. 5d
(140 mg, 62%) was obtained as a slightly yellow oil. IR
1
(neat) 3460 (±OH), 3070, 2920, 2860, 1721 (C=O) cm
;
( )-(4R,5S)-5-Hydroxyheptadeca-4-nolide (1c). 5c (240 mg,
0.57 mmol) was subjected to the same reaction described
for the synthesis of 1a from 5a. 1c (130 mg, 50%) was
obtained as a white solid: mp 70.5 ꢀC; [a]20d= 13.6ꢀ
1H NMR (CDCl3) d 0.89 (t, 3H, J=6.8 Hz, ±CH3),
1.21±1.52 (m, 25H, ±(CH2)11± and ±CH3), 2.52 (m,
1H, ±OH), 3.58 (m, 1H, C5-H), 3.81 (m, 1H, C4-H),
4.23 (q, 2H, J=4.6 Hz, ±CO2CH2±), 433±4.72 (dd, 2H,
J=11.9, 49.9 Hz, ±OCH2), 6.10 (d, 1H, J=14.8 Hz,
C2-H), 6.96 (dd, 1H, J=14.8, 6.8 Hz, C3-H), 7.36 (s, 5H,
-phenyl).
(c=5.0, CHCl3); IR (KBr) 3430 (±OH), 2960, 2920,
1
1780 (C=O) cm
;
1H NMR (CDCl3) d 0.90 (t,
3H, J=6.9 Hz, ±CH3), 1.22±1.51 (s, 22H, ±(CH2)11±),
2.08 (s, 1H, ±OH), 2.10 2.45 (m, 2H, C3-H), 2.61 (m,
2H, C2-H), 3.94 (m, 1H, C5-H), 4.43 (ddd, 1H, J=3.0,
7.1, 10.1 Hz, C4-H); 13C NMR (CDCl3) d 15.5, 22.4,
24.0, 24.8, 26.6, 30.0, 30.7, 30.9, 72.7 (C5), 84.2 (C4),
(+)-(4S,5S)-5-Hydroxyheptadeca-4-nolide (1d). 5d (140 mg,
0.34 mmol) was subjected to the reaction described for
the synthesis of 1a. 1d (50 mg, 52%) was obtained as a