T. Sugahara, K. Ogasawara / Tetrahedron: Asymmetry 9 (1998) 2215–2217
2217
satisfactory overall yield. Oxidation17 of 9 followed by the Wittig reaction of the resulting aldehyde
29
10 gave the isopropylidene product 11, [α]D +4.8 (c 0.7, CHCl3), which, on acid-hydrolysis, afforded
the diol 12, [α]D27 +32.6 (c 1.0, CHCl3). The overall yield of 12 from 7 was 55%. The phenolic hydroxy
functionality of 12 was selectively protected by treating with methoxymethyl chloride in the presence of a
phase transfer catalyst18 to give the aryl ether 13 in 47% yield with some recovery of the starting material
(∼20%), although the yield of 13 was less than satisfactory. While the phenolic hydroxy functionality
was blocked, the primary hydroxy functionality was removed by its tosylation followed by borohydride
reduction19 of the resulting tosylate 14 to give the penultimate intermediate 15, [α]D +7.9 (c 0.1,
27
CHCl3), bearing a secondary methyl functionality, in 90% yield. Finally, 15 was acid-hydrolyzed to give
(+)-curcuphenol 3, [α]D +26.0 (c 0.3, CHCl3), ([α]D +24.6ꢀ2 for the natural product;8 [α]D +29.5
(c 0.2, CHCl3) for the enantiomerically pure sample after purification by preparative HPLC using a chiral
column12), in 88% yield. Enantiomeric excess of the product was determined to be 90% ee by HPLC12
using a chiral column which corresponded to that of the thermolysis product 6.
27
29
References
1. (a) Ogasawara, K. Pure & Appl. Chem. 1994, 66, 2119. (b) Ogasawara, K. J. Syn. Org. Chem. Jpn 1996, 54, 15.
2. Sugahara, T.; Kuroyanagi, Y.; Ogasawara, K. Synthesis 1996, 1101.
3. Takano, S.; Sato, T.; Inomata, K.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1991, 462.
4. Nakada, Y.; Sugahara, T.; Ogasawara, K. Tetrahedron Lett. 1997, 38, 857.
5. Pertinent reviews: (a) Mitsunobu, O. Synthesis 1981, 1. (b) Hughes, D. L. Org. React. 1992, 42, 335. (c) Hughes, D. L.
Org. Prep. Proc. Int. 1996, 28, 127.
6. (a) Goering, H. L.; Kimoto, W. I. J. Am. Chem. Soc. 1965, 87, 1748. (b) Takano, S.; Akiyama, M.; Ogasawara, K. J. Chem.
Soc., Perkin Trans. 1 1985, 2447.
7. Shull, B. K.; Sakai, T.; Nichols, J. B.; Koreeda, M. J. Org. Chem. 1997, 62, 8294.
8. Wright, A. E.; Pomponi, S. A.; McConnell, O. J.; Kohmoto, S.; McCarthy, P. J. J. Nat. Prod. 1987, 50, 976.
9. (−)-Curcuphenol was also isolated from the Caribbean gorgonian Pseudopterogorgia rigida, see: McEnroe, F. J.; Fenical,
W. Tetrahedron 1978, 34, 1661.
10. Isolation of curcuphenol with undetermined absolute structure from a terrestrial plant was also reported, see: Bohlmann,
F.; Lonitz, M. Chem. Ber. 1978, 111, 843.
11. Synthesis of curcuphenol: racemic: Ref. 9; chiral for (−)-enantiomer: Ghisalberti, E. L.; Jefferies, P. R.; Stuart, A. D. Aust.
J. Chem. 1979, 32, 1627.
12. For 1: Chiralcel OB (10% PriOH–hexane). For 3: Chiralcel OJ (1% PriOH–hexane). For 4: Chiralcel OD (5%
PriOH–hexane). For 6: Chiralcel OJ (5% PriOH–hexane).
13. (a) Rhoads, S. J.; Raulins, N. R. Org. React. 1975, 22, 1. (b) Wipf, P. In Comprehensive Organic Synthesis; Trost, B. M.;
Fleming, I.; Paquette, L. A., Eds; Pergamon Press: Oxford, 1991; Vol. 5, p. 827.
14. Fleming, I. In Frontier Orbitals and Organic Chemical Reactions; John Wiley & Sons: London, 1976.
15. Vdovtsova, E. A. Zh. Org. Khim. 1969, 5, 498 [Chem. Abstr. 1969, 71, 12719V].
16. Miyashita, M.; Yoshikoshi, A.; Grieco, P. A. J. Org. Chem. 1977, 42, 3772.
17. Parikh, J. R.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89, 5505.
18. Heerden, F. R. v.; Zyl, J. J. v.; Rall, G. J. H.; Brandt, E. V.; Roux, D. G. Tetrahedron Lett. 1978, 661.
19. Guanti, G.; Narisano, E.; Podgorski, T.; Thea, S.; Williams, A. Tetrahedron 1990, 46, 7081.