Angewandte
Chemie
conceptual purposes only. For lead overviews, see: a) E. Zurek,
direct use in the preparation of combined ACE–NEP
(angiotensin-converting enzyme and neutral endopeptidase)
inhibitors.[12]
T. Ziegler, Prog. Polym. Sci. 2004, 29, 107 – 148; b) P. L. Bryant,
C. R. Harwell, A. A. Mrse, E. F. Emery, Z. Gan, T. Caldwell,
A. P. Reyes, P. Kuhns, D. W. Hoyt, L. S. Simeral, R. W. Hall,
L. G. Butler, J. Am. Chem. Soc. 2001, 123, 12009 – 12017; c) H.
Hanawa, N. Abe, K. Marouka, Tetrahedron Lett. 1999, 40, 5365 –
5368.
In conclusion, we have described the first method for the
copper-catalyzed enantioselective alkylation of Baylis–Hill-
man-derived electron-deficient allylic chlorides with organo-
zinc reagents thorough the use of a simple chiral secondary
amine and promotion by MAO of the zinc Schlenk equili-
brium. Further intensive studies are underway to identify the
nature of the p-stacking interactions responsible for the
ordered transition state.
[9] The preparation of PhZnEt (from ZnPh2 and ZnEt2) has been
reported by the groups of Fu and others, see: a) M. Fontes, X.
Verdaguer, L. Solꢃ, M. A. Pericꢃs, A. Riera, J. Org. Chem. 2004,
69, 2532 – 2543; b) J. Rudolph, N. Hermanns, C. Bolm, J. Org.
Chem. 2004, 69, 3997 – 4000; c) P. I. Dosa, G. C. Fu, J. Am. Chem.
Soc. 1998, 120, 445 – 446; d) P. I. Dosa, J. C. Ruble, G. C. Fu, J.
Org. Chem. 1997, 62, 444 – 445. We are unaware of any work on
the equivalent halide equilibrium.
[10] a) NMR spectroscopic evidence indicates a value of k1/kꢀ1
<
Experimental Section
0.002 under unpromoted conditions: D. F. Evans, G. V. Fazaker-
ley, J. Chem. Soc. A 1971, 182 – 183; b) Very recently, Knochel
has demonstrated exchange of ArZnI species: F. F. Kneisel, M.
Dochnahl, P. Knochel, Angew. Chem. 2004, 116, 1032 – 1036;
Angew. Chem. Int. Ed. 2004, 43, 1017 – 1021.
General procedure for the CuTC-catalyzed alkylation of allylic
chlorides 1: A dried Schlenk tube was charged with chloride 1
(0.50 mmol), CuTC (4.8 mg, 0.025 mmol), and (S,S)-3h (14.3 mg,
0.05 mmol). Dry DME (1 mL) was introduced, the stirred mixture
was cooled to ꢀ408C, and MAO (0.5 mL of a 15 wt% solution in
toluene; Aldrich) was added. The yellow reaction mixture was stirred
for 5 min at ꢀ408C, and then ZnR2 (for R = Et: 1 mL of a 1.1m
solution in toluene, 1.1 mmol; for R = nBu: 1 mL of a 1m solution
in heptane, 1.0 mmol) was added. Stirring was continued for 45 h at
ꢀ408C, then the reaction was quenched by cautious addition of 2m
HCl (2 mL). The aqueous layer was extracted with Et2O (2 ꢁ 5 mL),
then the organic extracts were dried (MgSO4), and the solvent was
evaporated. The products were isolated by flash chromatography
using mixtures of Et2O/hexanes as eluent.
[11] G. D. Allred, L. S. Liebeskind, J. Am. Chem. Soc. 1996, 118,
2748 – 2749.
[12] N. Inguimbert, P. Coric, H. Poras, H. Meudal, F. Teffot, M.-C.
Fournie-Zaluski, B. P. Roques, J. Med. Chem. 2002, 45, 1477 –
1486.
Received: December 22, 2004
Published online: March 10, 2005
Keywords: allylation · asymmetric catalysis · copper · zinc
.
[1] a) K. Tissot-Croset, D. Polet, A. Alexakis, Angew. Chem. 2004,
116, 2480 – 2482; Angew. Chem. Int. Ed. 2004, 43, 2426 – 2428;
b) A. O. Larsen, W. Leu, C. N. Oberhuber, J. E. Campbell, A. H.
Hoveyda, J. Am. Chem. Soc. 2004, 126, 11130 – 11131; c) U.
Piarulli, P. Daubos, C. Claveric, M. Roux, C. Genari, Angew.
Chem. 2003, 115, 244 – 246; Angew. Chem. Int. Ed. 2003, 42, 234 –
236; d) W.-J. Shi, L.-X. Wang, Y. Fu, S.-F. Zhou, Q.-L. Zhou,
Tetrahedron: Asymmetry 2003, 14, 3867 – 3872; e) H. Malde,
A. W. van Zijl, L. A. Arnold, B. L. Feringa, Org. Lett. 2001, 3,
1169 – 1171; f) F. Dubner, P. Knochel, Tetrahedron Lett. 2000, 41,
9233 – 9237.
[2] a) K. E. Murphy, A. H. Hoveyda, J. Am. Chem. Soc. 2003, 125,
4690 – 4691; b) M. A. Kacrpzynski, A. H. Hoveyda, J. Am.
Chem. Soc. 2004, 126, 10676 – 10681.
[3] The addition of Zn(CH2tBu)2 to 1a (62% yield, 12% ee, 6.8:1
SN2’/SN2) has been reported in a patent: P. Knochel, F. Dꢀbner
(Avecia Ltd., UK), PCT Int. Appl. WO2000012449, 2000 [Chem.
Abstr. 2000, 132, 222063].
[4] L.-H. Xu, E. P. Kꢀndig, Helv. Chim. Acta 1994, 77, 1480 – 1484.
[5] C. Bꢂrner, P. J. Goldsmith, S. Woodward, J. Gimeno, S. Gladiali,
D. Ramazzotti, Chem. Commun. 2000, 2433 – 2434.
[6] D. J. Berrisford, C. Bolm, K. B. Sharpless, Angew. Chem. 1995,
107, 1159 – 1171; Angew. Chem. Int. Ed. Engl. 1995, 34, 1059 –
1070.
[7] a) J. Boersma, J. G. Noltes, Tetrahedron Lett. 1966, 1521 – 1525;
The limited data that exists suggests that under MAO-free
conditions k1/kꢀ1 < 0.01, see: b) D. F. Evans, I. Wharf, J. Chem.
Soc. A 1968, 4, 783 – 787.
[8] The structure of MAO is not known (linear, ring, and cage
structures have all been proposed). Structure 4 is given for
Angew. Chem. Int. Ed. 2005, 44, 2235 –2237
ꢀ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2237