3
successfully, albeit with relatively lower yields. It was
noteworthy that primary alkyl iodide (3n) underwent the reaction
smoothly with modest yield and good regioselectivity (95:5 rr).
Importantly, this catalytic system worked pretty well for the
tandem isomerization-hydroalkylation of various internal
Conclusions
In conclusion, we have developed a novel and efficient
terminal-selective alkylation of internal alkenes via nickel-
catalyzed isomerization/hydroalkylation reaction. This method
demonstrated broad scope, mild conditions and excellent
regioselectivity. The key to success is the use of bis(oxazoline) as
the ligand to improve the reactivity of this nickel-catalyzed
tandem reaction. Further studies of the mechanistic details of this
transformation and the application of this method for the late-
stage modification of some complex bioactive molecules are still
ongoing in our laboratory.
ʹ
ʹʹ
alkenes. Both trans-3-octene (3a ) and trans-4-octene (3a )
could be selectively alkylated to give the terminal alkylation
products in good yields with excellent selectivities. To our
interest, trans-5-decene was also hydroalkylated smoothly in
moderate yield and high selectivity (3o), in which a long
chainwalking was required before the terminal alkylation.
Finally, internal alkenes with various functional groups, such as
ether (3p), ester (3q) and acetal (3r), could be well tolerated in
this transformation.
On the basis of the above results and previous reports,11
a
Acknowledgments
plausible mechanism involving a Ni(I)/Ni(III) catalytic cycle is
proposed as shown in Scheme 2. Firstly, the Ni-H species B
could be generated via transmetalation between the Ni(I) species
A with the silane under the activation of K3PO4. Subsequently,
the insertion of internal alkene into Ni-H species B generates
alkyl-nickel intermediate C, which undergoes β-hydride
elimination to afford the intermediate D. After readdition of Ni-H
species, a new primary alkyl-nickel(I) species E is formed. This
alkyl-nickel intermediate E thus reacts preferentially with the
alkyl halide (R-X) to generate Ni(III) species F.12 Finally, the
terminal selective coupling product 3 is obtained after the
reductive elimination from intermediate F, and Ni(I) catalyst A is
regenerated to complete the catalytic cycle.
We gratefully acknowledge the National Basic Research
Program of China (973 Program 2015CB856600), the National
Science Foundation of China (21772187, 21522208, 21372209)
for financial support.
References and notes
1.
For reviews or books on cross-coupling reactions, see (a) Liu, C.;
Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780; (b) Seechurn,
C. C. C. J.; Kitching, M. O.; Colacot, T. J.; Snieckus, V. Angew. Chem.
Int. Ed. 2012, 51, 5062; (c) Crawley, M. L.; Trost, B. M.; Shen, H. C.
Selected Applications of Transition Metal-Catalyzed Carbon-Carbon
Cross-Coupling Reactions in the Pharmaceutical Industry, Wiley-VCH,
Weinheim, 2012.
To demonstrate the application prospect of this method, our
newly developed catalytic system has been applied to the
isomerization-hydroalkylation of isomeric mixtures of aliphatic
olefins, which are usually obtained from petrochemical sources
and thus substantially cheaper and more easily accessible than
pure olefin isomers. As shown in Scheme 3, under the standard
conditions, a mixture of octenes with equimolar amounts of four
octene isomers afforded the terminal alkylated product with good
yield (82%) and excellent regioselectivity (97:3 rr). This result
suggested the great potential of this transformation in organic
synthesis.
2.
For selected reviews, see: (a) Miyaura, N. Metal-Catalyzed Cross-
Coupling Reactions, 2th ed., Wiley-VCH, Weinheim, 2008, pp. 41-123;
(b) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633; (c)
Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.;
Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem. Int. Ed. 2003, 42,
4302; (d) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117; (e)
Haas, D.; Hammann, J. M.; Greiner, R.; Knochel, P. ACS Catal. 2016,
6, 1540; (f) Phapale, V. B.; Cárdenas, D. J. Chem. Soc. Rev. 2009, 38,
1598; (g) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111,
1417; (h) Geist, E., Kirschning, A.; Schmidt, T. Nat. Prod. Rep. 2014,
31, 441; (i) Chemler, S. R.; Trauner, D.; Danishefsky, S. J. Angew.
Chem. Int. Ed. 2001, 40, 4544; (j) Netherton, M. R.; Fu, G. C. Adv.
Synth. Catal. 2004, 346, 1525; (k) Hu, X. Chem. Sci. 2011, 2, 1867; (l)
Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299;
(m) Ananikov, V. P. ACS Catal. 2015, 5, 1964; (n) Choi, J.; Fu, G. C.
Science 2017, 356, 152.
3.
For selected examples, see: (a) Giannerini, M.; Fañanás-Mastral,
M.; Feringa, B. L. Nat. Chem. 2013, 5, 667; (b) Li, L.; Wang, C.-Y.;
Huang, R.; Biscoe, M. R. Nat. Chem. 2013, 5, 607; (c) Vechorkin, O.;
Hu, X. Angew. Chem. Int. Ed. 2009, 48, 2937; (d) Yu, X.; Yang, T.;
Wang, S.; Xu, H.; Gong, H. Org. Lett. 2011, 13, 2138; (e) Johnston, C.
P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016,
536, 322; (f) Le, C.; Liang, Y.; Evans, R. W.; Li, X.; MacMillan, D. W.
C. Nature 2017, 547, 79; (g) Qin, T.; Cornella, J.; Li, C.; Malins, L. R.;
Edwards, J. T.; Kawamura, S. B.; Maxwell, D.; Eastgate, M. D.; Baran,
P. S. Science 2016, 352, 801; (h) Schmidt, J.; Choi, J.; Liu, A. T.;
Slusarczyk, M.; Fu, G. C. Science 2016, 354, 1265.
4. For selected examples on unactivated olefins used as alkyl
organometallics equivalents, see: (a) Yang, Y.; Shi, S.-L.; Niu, D.; Liu,
P.; Buchwald, S. L. Science 2015, 349, 62; (b) Gui, J.; Pan, C.-M.; Jin,
Y.; et al. Science 2015, 348, 886; (c) Sakae, R.; Hirano, K.; Miura, M.
J. Am. Chem. Soc. 2015, 137, 6460; (d) Xi, Y.; Butcher, T. W.; Zhang,
J.; Hartwig, J. F. Angew. Chem. Int. Ed. 2016, 55, 776; (e) Waser, J.;
Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 5676; (f) Gaspar, B.;
Carreira, E. M. Angew. Chem. Int. Ed. 2007, 46, 4519; (g) Su, W.;
Gong, T.-J.; Lu, X.; Xu, M.-Y.; Yu, C.-G.; Xu, Z.-Y.; Yu, H.-Z.; Xiao,
B.; Fu, Y. Angew. Chem. Int. Ed. 2015, 54, 12957; (h) Lo J. C.; Yabe,
Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136, 1304; (i) Miki, Y.;
Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2013,
52, 10830; (j) Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett.
2014, 16, 1498; (k) Waser, J.; Carreira, E. M. Angew. Chem. Int. Ed.
2004, 43, 4099; (l) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C. M.; Baran, P. S.
Nature 2014, 516, 343; (m) Wang, Y.-M.; Bruno, N. C.; Placeres, Á. L.;
Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 10524; (n) Lu,
X.; Xiao, B.; Zhang, Z.; Gong, T.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nat.
Commun. 2016, 7, 11129.
Scheme 2. Proposed mechanism.
Scheme 3. Terminal-selective alkylation of mixture of alkene
isomers.
5.
For books or reviews on remote functionalization through alkene isome-