Page 5 of 6
ACS Catalysis
in Furan Syntheses. Angew. Chem., Int. Ed. 2005, 44, 850–852;
g) Pridmore, S. J.; Slatford, P. A.; Taylor, J. E.; Whittlesey, M.
K.; Williams, J. M. J. Synthesis of Furans, Pyrroles and
Experimental details, procedures and copies of spectra are reported
in the Supporting Information. This material is available free of
1
2
3
4
5
6
7
8
Pyridazines by
a Ruthenium-Catalysed Isomerisation of
Alkynediols and In Situ Cyclisation. Tetrahedron 2009, 65,
8981–8986; h) Feng, X.; Tan, Z.; Chen, D.; Shen, Y.; Guo, C.-
G.; Zhu, J. X. C. Synthesis of Tetrasubstituted Furans via In-
Catalyzed Propargylation of 1,3-Dicarbonyl Compounds-
Cyclization Tandem Process. Tetrahedron Lett. 2008, 49, 4110–
4112.
ACKNOWLEDGMENT
EPSRC KCL Strategic Fund is acknowledged for funding. CR
acknowledges the University of Siena for a PhD period of leave.
FZ and DC acknowledge K.C. Wong Education Foundation for
financial support. Dr Francesca Mazzacuva at Mass Spectrometry
Facility at King’s College London is gratefully acknowledged for
HRMS experiments.
7)
Donohoe, T. J.; Bower, J. F.; Basutto, J. A. Olefin Cross-
Metathesis–Based Approaches to Furans: Procedures for the
Preparation of Di- And Trisubstituted Variants. Nature Protoc.
2010, 5, 2005–2010.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
8)
9)
Schmidt, B.; Krehl, S.; Jablowski, E. Assisted Tandem Catalytic
RCM-Aromatization in the Synthesis of Pyrroles and Furans.
Org. Biomol. Chem. 2012, 10, 5119–5130.
1)
a) Lukevits, É.; Demicheva, L. Biological Activity of Furan
Derivatives (Review). Chem. Heter. Comp. 1993, 29, 243–267;
b) Gubina, T. I.; Kharchenko, V. G. Furan and its Derivatives in
the Synthesis of Other Heterocycles (Review). Chem. Heter.
Comp. 1995, 31, 900–916; c) Maier, M. Furan as a Building
Block in Synthesis. In Organic Synthesis Highlights II (ed. H.
Waldmann), VCH Verlagsgesellschaft mbH, Weinheim, 2008,
231-242. d) Keay, B. A.; Dibble, P. W. Furans and their Benzo
Derivatives: Applications. In Comprehensive Heterocyclic
Chemistry II, Vol. 2 (Eds.: A. R. Katritzky, C. W. Rees, E. F. V.
Scriven), Elsevier, Oxford, 1997, 395–436; e) Hou, X. L.; Yang,
Z.; Wong, H. N. C. Five-Membered Ring Systems: Furans and
Benzofurans. In Progress in Heterocyclic Chemistry, Vol. 15
(Eds.: G. W. Gribble, T. L. Gilchrist) Pergamon, Oxford, 2003,
167-205; f) Lipshutz, B. H. Five-Membered Heteroaromatic
Rings as Intermediates in Organic Synthesis. Chem. Rev. 1986,
86, 795–819.
Schmidt, B.; Geiβler, D. Ru-and Pd-Catalysed Synthesis of 2-
Arylfurans by One-Flask Heck Arylation/Oxidation. Eur. J. Org.
Chem. 2011, 4814 – 4822.
10) Donohoe, T. J.; Orr, A. J.; Gosby, K.; Bingham, M. A
Metathesis Approach to Aromatic Heterocycles. Eur. J. Org.
Chem. 2005, 1969–1971.
11) 11) a) Jeong, G-Y.; Singh, A. K.; Sharma, S.; Kim, D. One-Flow
Syntheses of Diverse Heterocyclic Furan Chemicals Directly
from Fructose via Tandem Transformation Platform. NPG Asia
Materials 2015, 7, e173; b) Agirrezabal-Telleria, I.; Guo, Y.;
Hemmann, F.; Arias, P. L.; Kemnitz, E. Dehydration of Xylose
and Glucose to Furan Derivatives Using Bifunctional Partially
Hydroxylated Mgf2 Catalysts and N2-Stripping. Catal. Sci.
Technol. 2014, 4, 1357-1368. c) Liu, B.; Gou, Z.; Liu, A.; Zhang,
Z. Synthesis of Furan Compounds from HMF and Fructose
Catalyzed by Aluminum-Exchanged K-10 Clay. J. Ind. Eng.
Chem. 2015, 21, 338-339.
2)
a) Blanchard, L.; Tominaga, T.; Dubourdieu, D. Formation of
Furfurylthiol Exhibiting a Strong Coffee Aroma During Oak
Barrel Fermentation from Furfural Released by Toasted Staves.
J. Agric. Food Chem. 2001, 49, 4833–4835; b) Schoenauer, S.;
Schieberle, P. Structure-Odor Correlations in Homologous
Series of Mercapto Furans and Mercapto Thiophenes
Synthesized by Changing the Structural Motifs of the Key Coffee
Odorant Furan-2-ylmethanethiol. J. Agric. Food Chem. 2018, 66,
4189–4199.
12) Lauder, K.; Toscani, A.; Qi, Y.; Lim, J.; Charnock, S. J.; Korah,
K.; Castagnolo, D. Photo-Biocatalytic One-Pot Cascades for the
Enantioselective Synthesis of 1,3-Mercaptoalkanol Volatile
Sulfur Compounds. Angew. Chem., Int. Ed. 2018, 57, 5803-5807.
13) a) Toscani, A.; Risi, C.; Black, G. W.; Brown, N. L.; Shaaban,
A.; Turner, N. J.; Castagnolo, D. Monoamine oxidase (MAO-N)
Whole Cell Biocatalyzed Aromatization of 1,2,5,6-
Tetrahydropyridines into Pyridines. ACS Catal. 2018, 8, 8781-
8787; b) Scalacci, N.; Black, G. W.; Mattedi, G.; Brown, N. L.;
Turner, N. J.; Castagnolo, D. Unveiling the Biocatalytic
Aromatizing Activity of Monoamine Oxidases MAO-N and 6-
HDNO: Development of Chemoenzymatic Cascades for the
Synthesis of Pyrroles. ACS Catal. 2017, 7, 1295-1300.
3)
Khaghaninejad, S.; Heravi, M. M. Paal–Knorr Reaction in the
Synthesis of Heterocyclic Compounds. In Advances in
Heterocyclic Chemistry, Vol. 111 (Eds.: A. R. Katritzky)
Elsevier Academic Press Inc.: San Diego, 2014, 95−146.
4)
5)
Feist, F. Studien in der Furan-und Pyrrol-Gruppe. Ber. Dtsch.
Chem. Ges. 1902, 35, 1537.
Stauffer, F.; Neier, R. Synthesis of Tri- and Tetrasubstituted
Furans Catalyzed by Trifluoroacetic Acid. Org. Lett. 2000, 2,
3535–3537.
14) a) Sheldon, R. A.; Woodley, J. M. Role of Biocatalysis in
Sustainable Chemistry. Chem. Rev. 2018, 118, 801–838; b)
Albarrán-Velo, J.; González-Martínez, D.; Gotor-Fernández, V.
Stereoselective Biocatalysis: A Mature Technology for the
Asymmetric Synthesis of Pharmaceutical Building Blocks.
Biocat. Biotrans. 2018, 36, 102-130.
6)
a) Hou, X. L.; Cheung, H. Y.; Hon, T. Y.; Kwan, P. L.; Lo, T.
H.; Tong, S. Y.; Wong, H. N. C. Regioselective Syntheses of
Substituted Furans. Tetrahedron, 1998, 54, 1955–2020; b) Duan,
X.; Liu, X.; Guo, L.; Liao, M.; Liu, W.; Liang, Y. Palladium-
Catalyzed One-Pot Synthesis of Highly Substituted Furans by a
Three-Component Annulation Reaction. J. Org. Chem. 2005, 70,
6980–6983; c) Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C.
Cross-Coupling of Heteroarenes by C-H Functionalization:
Recent Progress Towards Direct Arylation and Heteroarylation
Reactions Involving Heteroarenes Containing One Heteroatom.
Adv. Synth. Catal. 2014, 356, 17–117; d) Mei, S.-T.; Liang, H.-
W.; Teng, B.; Wang, N.-J.; Shuai, L.; Yuan, Y.; Chen, Y.-C.;
Wei, Y. Spirocyclic Sultam and Heterobiaryl Synthesis Through
Rh-Catalyzed Cross-Dehydrogenative Coupling of N-Sulfonyl
Ketimines and Thiophenes or Furans. Org. Lett. 2016, 18, 1088–
1091; e) Dey, A.; Ali, M. A.; Jana, S.; Hajra, A. Copper-
Catalyzed Regioselective Synthesis of Multisubstituted Furans
By Coupling Between Ketones and Aromatic Olefins. J. Org
Chem. 2017, 82, 4812–4818; f) Brown, R. C. D. Developments
15) Xu, J.; Green, A. P.; Turner, N. J. Chemo-Enzymatic Synthesis
of Pyrazines and Pyrroles. Angew. Chem., Int. Ed. 2018, 57,
16760-16763.
16) a) Riva, S. Laccases: Blue Enzymes for Green Chemistry. Trends
Biotechnol. 2006, 24, 219–226; b) Coutoand, S. R.; Herrera, J.
L. T. Industrial and Biotechnological Applications of Laccases:
A Review. Biotechnol. Adv. 2006, 24, 500–513; c) Witayakran,
S.; Ragauskas, A. J. Synthetic Applications of Laccase in Green
Chemistry. Adv. Synth. Catal. 2009, 351, 1187–1209; d)
Kudanga, T.; Nyanhongo, G. S.; Guebitz, G. M.; Burton, S.
Potential Applications of Laccase-Mediated Coupling and
Grafting Reactions: A Review. Enzyme Microb. Technol. 2011,
48, 195–208; e) Díaz-Rodríguez, A.; Lavandera, I.; Kanbak-
Aksu, S.; Sheldon, R. A.; Gotor, V.; Gotor-Fernández, V. From
Diols to Lactones Under Aerobic Conditions Using
a
ACS Paragon Plus Environment