6768
J . Org. Chem. 1998, 63, 6768-6769
Sch em e 1
Tem p or a r y Silicon -Teth er ed Rin g-Closin g
Meta th esis Ap p r oa ch to C2-Sym m etr ica l
1,4-Diols: Asym m etr ic Syn th esis of D-Altr itol
P. Andrew Evans* and V. Srinivasa Murthy
Brown Laboratory, Department of Chemistry and Biochemistry,
University of Delaware, Newark, Delaware 19716
Ta ble 1. Rin g-Closin g Meta th esis P r oced u r e for
Cou p lin g Op tica lly En r ich ed 1,4-Allylic Alcoh ols
Received J une 18, 1998
The enantioselective construction of the C2-symmetrical
molecules, particularly 1,4-diols, continues to attract sig-
nificant attention1 owing to their importance as precursors
to a variety of asymmetric catalysts,2 as chiral auxiliaries3
and as useful intermediates for two-directional synthesis.4
However, a survey of the literature revealed surprisingly
few methods for the preparation of this type of structural
motif, despite its significance as an important asymmetric
building block. The combination of temporary silicon-
tethering methodology5 with ring-closing metathesis6,7 has
been demonstrated, in an achiral system, to be a useful
method for the preparation of simple 1,4-diols.7a Herein, we
describe an adaptation of this concept, utilizing optically
enriched allylic alcohols 1 to facilitate the synthesis of
protected C2-symmetrical 1,4-diols 4, as outlined in Scheme
1.
Table 1 summarizes the results for the application of this
methodology to a series of optically enriched allylic alcohols.8
Treatment of the allylic alcohols 1a -e with diphenyldichlo-
rosilane and 2,6-lutidine furnished the bis-alkoxysilanes
(1) For a review on C2 symmetry in synthesis, see: Whitesell, J . K. Chem.
Rev. 1989, 89, 1581. For recent synthetic approaches to C2-symmetrical 1,4-
diols, see: (a) Lieser, J . K. Synth. Commun. 1983, 13, 765. (b) Seebach, D.;
Renaud, P. Helv. Chim. Acta 1985, 68, 2342. (c) Short, R. P.; Kennedy, R.
M.; Masamune, S. J . Org. Chem. 1989, 54, 1755. (d) Kim, M.-J .; Lee, I. S.
Synlett 1993, 767. (e) Zwaagstra, M. E.; Meetsma, A.; Feringa, B. L.
Tetrahedron: Asymmetry 1993, 4, 2163. (f) Morin, C. Tetrahedron Lett. 1993,
34, 5095. (g) Vettel, S.; Knochel, P. Tetrahedron Lett. 1994, 35, 5849 and
pertinent references therein.
(2) (a) Burk, M. J . J . Am. Chem. Soc. 1991, 113, 8518. (b) Burk, M. J .;
Feaster, J . E.; Harlow, R. L. Tetrahedron: Asymmetry 1991, 2, 569 and
pertinent references therein.
(3) Chong, J . M.; Clarke, I. S.; Koch, I.; Olbach, P. C.; Taylor, N. J .
Tetrahedron: Asymmetry 1995, 6, 409 and pertinent references therein.
(4) For a review on two-directional synthesis, see: Magnuson, S. R.
Tetrahedron 1995, 51, 2167.
(5) For recent reviews on temporary silicon-tethered strategies, see: (a)
Fensterbank, L.; Malacria, M.; Sieburth, S. McN. Synthesis 1997, 813. (b)
Gauthier, D. R., J r.; Zandi, K. S.; Shea, K. J . Tetrahedron 1998, 54, 2290.
(6) For recent reviews on ring-closing metathesis, see: (a) Grubbs, R.
H.; Miller, S. J .; Fu, G. C. Acc. Chem. Res. 1995, 28, 446. (b) Armstrong, S.
K. J . Chem. Soc., Perkin Trans. 1 1998, 371. (c) Grubbs, R. H.; Chang, S.
Tetrahedron 1998, 54, 4413.
(7) For some recent leading references on Ru-catalyzed ring-closing
metathesis, see: (a) Fu, G. C.; Grubbs, R. H. J . Am. Chem. Soc. 1992, 114,
5426. (b) Meng, D.; Su, D.-S.; Balog, A.; Bertinato, P.; Sorenson, E. J .;
Danishefsky, S. J .; Zheng, Y.-H.; Chou, T.-C.; He, L.; Horwitz, S. B. J . Am.
Chem. Soc. 1997, 119, 2733. (c) Martin, S. F.; Chen, H.-J .; Courtney, A. K.;
Liao, Y.; Patzel, M.; Ramser, M. N.; Wagman, A. A. Tetrahedron 1996, 52,
7251. (d) Furstner, A.; Langeman, K. J . Org. Chem. 1996, 61, 8746. (e)
Huwe, C. M.; Blechert, S. Synthesis 1997, 61. (f) Clark, J . S.; Kettle, J . G.
Tetrahedron Lett. 1997, 38, 127. (g) Barrett, A. G. M.; Baugh, S. P. D.;
Gibson, V. C.; Giles, M. R.; Marshall, E. L.; Procopiou, P. A. J . Chem. Soc.
Chem. Commun. 1997, 155. (h) Yang, Z.; He, Y.; Vourloumis, D.; Vallberg,
H.; Nicolaou, K. C. Angew. Chem., Int. Ed. Engl. 1997, 36, 166. (i) Kim, S.
H.; Figueroa, I.; Fuchs, P. Tetrahedron Lett. 1997, 38, 2601. (j) Harrity, J .
P. A.; Visser, M. S.; Gleason, J . D.; Hoveyda, A. H. J . Am. Chem. Soc. 1997,
119, 1488. (k) Litinas, K. E.; Salteris, B. E. J . Chem. Soc., Perkin Trans. 1
1997, 2869. (l) Delgado, M.; Martin, J . D. Tetrahedron Lett. 1997, 38, 6299.
(m) Linderman, R. J .; Siedlecki, J .; O’Neill, S. A.; Sun, H. J . Am. Chem.
Soc. 1997, 119, 6919. (n) Kirkland, T. A.; Grubbs, R. H. J . Org. Chem. 1997,
62, 7310. (o) Crimmins, M. T.; Choy, A. L. J . Org. Chem. 1997, 62, 7548.
(p) Ovaa, H.; Leeuwenburgh, M. A.; Overkleeft, H. S.; Van der Marel, G.
A.; Van Boom, J . H. Tetrahedron Lett. 1998, 39, 3025. (q) Miller, J . F.;
Termin, A.; Koch, K.; Piscopio, A. D. J . Org. Chem. 1998, 63, 3158. (r) Burke,
S. D.; Ng, R. A.; Morrison, J . A.; Alberti, M. J . J . Org. Chem. 1998, 63,
3160 and pertinent references cited within these articles.
a
All the reactions were carried out on a 1.0 mmol reaction
scale.12 Isolated yields. c The ring-closing metathesis reactions
were carried out on a 0.25 mmol reaction scale at a concentration
of 0.05 M in refluxing dichloromethane.14
b
2a -e in excellent yield (entries 1-5). Preliminary studies
established the optimum conditions for the ring-closing
metathesis reaction, in terms of the catalyst loading, type
of solvent, and concentration. These studies determined that
an initial catalyst loading of 8 mol % followed by an
additional 2.5 mol % after approximately 20 h, at a concen-
tration of 0.05 M in refluxing dichloromethane, were re-
quired for the smooth formation of the diphenyl silaketals
4a -e. Interestingly, despite the somewhat extended reac-
tion times and elevated temperatures,11 the process appears
to be fairly general as illustrated by the alkyl and aryl
examples listed in Table 1 (entries 1-5).
The diphenyl silaketals 4 represent protected C2-sym-
metrical 1,4-diols that can be readily elaborated into a
(8) The enantiomerically enriched allylic alcohols 1 were all prepared in
the following manner. Sharpless asymmetric epoxidation9 of the primary
allylic alcohol i followed by the activation and rearrangement of the 2,3-
epoxy alcohol ii furnished the allylic alcohol 1 in excellent overall yield.10
(9) Gao, Y.; Hanson, R. M.; Klunder, J . M.; Ko, S. Y.; Masamune, H.;
Sharpless, K. B. J . Am. Chem. Soc. 1987, 109, 5765.
(10) Habashita, H.; Kawasaki, T.; Akaji, M.; Tamamura, H.; Kimachi,
T.; Fujii, N.; Ibuka, T. Tetrahedron Lett. 1997, 38, 8307.
(11) The reduced rates of reaction are presumably a function of the
increased steric hindrance due to allylic substituent. For related examples
of this type of problem in ring-closing metathesis, see: (a) Chang, S.; Grubbs,
R. H. Tetrahedron Lett. 1997, 38, 4757. (b) Meyer, C.; Cossy, J . Tetrahedron
Lett. 1997, 38, 7861.
S0022-3263(98)01152-9 CCC: $15.00 © 1998 American Chemical Society
Published on Web 09/12/1998