Journal of the American Chemical Society
Article
and Cell Death in Diverse Disease Models. J. Am. Chem. Soc. 2014,
136 (12), 4551−4556.
(39) Lanning, B. R.; Whitby, L. R.; Dix, M. M.; Douhan, J.; Gilbert,
A. M.; Hett, E. C.; Johnson, T. O.; Joslyn, C.; Kath, J. C.; Niessen, S.;
et al. A Road Map to Evaluate the Proteome-Wide Selectivity of
Covalent Kinase Inhibitors. Nat. Chem. Biol. 2014, 10 (9), 760−767.
(40) Backus, K. M.; Correia, B. E.; Lum, K. M.; Forli, S.; Horning, B.
(20) Zilka, O.; Shah, R.; Li, B.; Friedmann Angeli, J. P.; Griesser, M.;
Conrad, M.; Pratt, D. A. On the Mechanism of Cytoprotection by
Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in
Ferroptotic Cell Death. ACS Cent. Sci. 2017, 3 (3), 232−243.
(21) Friedmann Angeli, J. P.; Schneider, M.; Proneth, B.; Tyurina, Y.
Y.; Tyurin, V. A.; Hammond, V. J.; Herbach, N.; Aichler, M.; Walch,
A.; Eggenhofer, E.; et al. Inactivation of the Ferroptosis Regulator
Gpx4 Triggers Acute Renal Failure in Mice. Nat. Cell Biol. 2014, 16
(12), 1180−1191.
́
́
D.; Gonzalez-Paez, G. E.; Chatterjee, S.; Lanning, B. R.; Teijaro, J. R.;
Olson, A. J.; et al. Proteome-Wide Covalent Ligand Discovery in
Native Biological Systems. Nature 2016, 534 (7608), 570−574.
(41) Weerapana, E.; Wang, C.; Simon, G. M.; Richter, F.; Khare, S.;
Dillon, M. B. D.; Bachovchin, D. A.; Mowen, K.; Baker, D.; Cravatt, B.
F. Quantitative Reactivity Profiling Predicts Functional Cysteines in
Proteomes. Nature 2010, 468 (7325), 790−797.
(22) Dixon, S. J.; Stockwell, B. R. The Hallmarks of Ferroptosis.
Annu. Rev. Cancer Biol. 2019, 3 (1), 35−54.
(23) Seibt, T. M.; Proneth, B.; Conrad, M. Role of GPX4 in
Ferroptosis and Its Pharmacological Implication. Free Radical Biol.
Med. 2019, 133 (September2018), 144−152.
(24) Gaschler, M. M.; Andia, A. A.; Liu, H.; Csuka, J. M.; Hurlocker,
B.; Vaiana, C. A.; Heindel, D. W.; Zuckerman, D. S.; Bos, P. H.;
Reznik, E.; et al. FINO2 Initiates Ferroptosis through GPX4
Inactivation and Iron Oxidation. Nat. Chem. Biol. 2018, 14 (5),
507−515.
(25) Cerecetto, H.; Porcal, W. Pharmacological Properties of
Furoxans and Benzofuroxans: Recent Developments. Mini-Rev. Med.
Chem. 2005, 5, 57−71.
(26) Fershtat, L. L.; Makhova, N. N. Molecular Hybridization Tools
in the Development of Furoxan-Based NO-Donor Prodrugs.
ChemMedChem 2017, 12 (9), 622−638.
(27) Sayed, A. A.; Simeonov, A.; Thomas, C. J.; Inglese, J.; Austin,
C. P.; Williams, D. L. Identification of Oxadiazoles as New Drug
Leads for the Control of Schistosomiasis. Nat. Med. 2008, 14 (4),
407−412.
(28) Presolski, S. I.; Hong, V. P.; Finn, M. G. Copper-Catalyzed
Azide-Alkyne Click Chemistry for Bioconjugation. Curr. Protoc. Chem.
Biol. 2011, 3 (December), 153−162.
(29) Gao, J.; Yang, F.; Che, J.; Han, Y.; Wang, Y.; Chen, N.; Bak, D.
W.; Lai, S.; Xie, X.; Weerapana, E.; et al. Selenium-Encoded Isotopic
Signature Targeted Profiling. ACS Cent. Sci. 2018, 4 (8), 960−970.
(30) Brittelli, D. R.; Boswell, G. A. New Furoxan Chemistry. 2.
Chemistry of Acyl Nitrile Oxides Generated in Situ by Thermolysis of
Diacylfuroxans. J. Org. Chem. 1981, 46 (2), 316−320.
(31) Shimizu, T.; Hayashi, Y.; Taniguchi, T.; Teramura, K. Reaction
Of 3,4-Disubstituted 1,2,5-Oxadiazole-2-Oxides With Dipolarphiles.
Tetrahedron 1985, 41 (4), 727−738.
(32) Cecchi, L.; De Sarlo, F.; Faggi, C.; Machetti, F. 1,2,5-
Oxadiazole (Furazan) Derivatives from Benzoylnitromethane and
Dipolarophiles in the Presence of DABCO: Structure and
Intermediates. Eur. J. Org. Chem. 2006, 2006 (13), 3016−3020.
(33) Shaposhnikov, S. D.; Pirogov, S. V.; Mel’nikova, S. F.;
(42) Sakai, K.; Hasumi, K.; Endo, A. Identification of Koningic Acid
(Heptelidic Acid)-Modified Site in Rabbit Muscle Glyceraldehyde-3-
Phosphate Dehydrogenase. Biochim. Biophys. Acta, Protein Struct. Mol.
Enzymol. 1991, 1077 (2), 192−196.
(43) Hoffstrom, B. G.; Kaplan, A.; Letso, R.; Schmid, R. S.; Turmel,
G. J.; Lo, D. C.; Stockwell, B. R. Inhibitors of Protein Disulfide
Isomerase Suppress Apoptosis Induced by Misfolded Proteins. Nat.
Chem. Biol. 2010, 6 (12), 900−906.
(44) Tsuboi, K.; Bachovchin, D. A.; Speers, A. E.; Spicer, T. P.;
Fernandez-Vega, V.; Hodder, P.; Rosen, H.; Cravatt, B. F. Potent and
Selective Inhibitors of Glutathione S -Transferase Omega 1 That
Impair Cancer Drug Resistance. J. Am. Chem. Soc. 2011, 133, 16605−
16616.
(45) Ramkumar, K.; Samanta, S.; Kyani, A.; Yang, S.; Tamura, S.;
Ziemke, E.; Stuckey, J. A.; Li, S.; Chinnaswamy, K.; Otake, H.; et al.
Mechanistic Evaluation and Transcriptional Signature of a Gluta-
thione S-Transferase Omega 1 Inhibitor. Nat. Commun. 2016, 7,
13084.
(46) Vuckovic, A.-M.; Bosello Travain, V.; Bordin, L.; Cozza, G.;
Miotto, G.; Rossetto, M.; Toppo, S.; Venerando, R.; Zaccarin, M.;
Maiorino, M.; Ursini, F.; Roveri, A. Inactivation of the glutathione
peroxidase GPX4 by the ferroptosis-inducing molecule RSL3 requires
(47) Borchert, A.; Kalms, J.; Roth, S. R.; Rademacher, M.; Schmidt,
A.; Holzhutter, H. G.; Kuhn, H.; Scheerer, P. Crystal Structure and
Functional Characterization of Selenocysteine-Containing Gluta-
thione Peroxidase 4 Suggests an Alternative Mechanism of Peroxide
Reduction. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids 2018, 1863
(9), 1095−1107.
(48) Burakevich, J. V.; Butler, R. S.; Volpp, G. P. Phenylfurazan
Oxide. Chemistry. J. Org. Chem. 1972, 37 (4), 593−596.
(49) Kalinina, M. I.; Mosiev, I. K. Properties of Furoxans
Monosubstituted with Adamantanes. Chem. Heterocycl. Compd.
1988, 24, 217−220.
(50) Shin, J. M.; Cho, Y. M.; Sachs, G. Chemistry of Covalent
Inhibition of the Gastric (H+, K + )-ATPase by Proton Pump
Inhibitors. J. Am. Chem. Soc. 2004, 126 (25), 7800−7811.
(51) Johnson, D. S.; Weerapana, E.; Cravatt, B. F. Strategies for
Discovering and Derisking Covalent, Irreversible Enzyme Inhibitors.
Future Med. Chem. 2010, 2 (6), 949−964.
̈
Tselinsky, I. V.; Nather, C.; Graening, T.; Traulsen, T.;
Friedrichsen, W. Ring-Opening and Recyclization of 3,4-Diacylfurox-
ans by Nitrogen Nucleophiles. Tetrahedron 2003, 59 (7), 1059−1066.
(34) Sorba, G.; Ermondi, G.; Fruttero, R.; Galli, U.; Gasco, A.
Unsymmetrically Substituted Furoxans. Part 16. Reaction of
Benzenesulfonyl Substituted Furoxans with Ethanol and Ethanethiol
in Basic Medium. J. Heterocycl. Chem. 1996, 33, 327−334.
(35) Sorba, G.; Medana, C.; Fruttero, R.; Cena, C.; Stilo, A. Di;
Galli, U.; Gasco, A. Water Soluble Furoxan Derivatives as NO
Prodrugs. J. Med. Chem. 1997, 40, 463−469.
(52) Baillie, T. A. Targeted Covalent Inhibitors for Drug Design.
Angew. Chem., Int. Ed. 2016, 55 (43), 13408−13421.
̈
̈
(53) Brandstrom, A.; Lindberg, P.; Bergman, N.-Å.; Tekenbergs-
Hjelte, L.; Ohlson, K.; Grundevik, I.; Nordberg, P.; Alminger, T.;
Erickson, M.; Grundevik, I.; et al. Chemical Reactions of Omeprazole
and Omeprazole Analogues. V. The Reaction of N-Alkylated
Derivatives of Omeprazole Analogues with 2-Mercaptoethanol. Acta
Chem. Scand. 1989, 43, 587−594.
(36) Wade, P. A.; Amin, N. V.; Yen, H.; Price, D. T.; Huhn, G. F.
Acid-Catalyzed Nitronate Cycloaddition Reactions. Useful Syntheses
and Simple Transformations of 3-Acyl- and 3-Alkenylisoxazolines. J.
Org. Chem. 1984, 49 (24), 4595−4601.
(54) Carmi, C.; Galvani, E.; Vacondio, F.; Rivara, S.; Lodola, A.;
Russo, S.; Aiello, S.; Bordi, F.; Costantino, G.; Cavazzoni, A.; et al.
Irreversible Inhibition of Epidermal Growth Factor Receptor Activity
by 3-Aminopropanamides. J. Med. Chem. 2012, 55 (5), 2251−2264.
(55) Ray, S.; Kreitler, D. F.; Gulick, A. M.; Murkin, A. S. The Nitro
Group as a Masked Electrophile in Covalent Enzyme Inhibition. ACS
Chem. Biol. 2018, 13 (6), 1470−1473.
(37) Trogu, E.; Cecchi, L.; De Sarlo, F.; Guideri, L.; Ponticelli, F.;
Machetti, F. Base- and Copper-Catalysed Condensation of Primary
Activated Nitro Compounds with Enolisable Compounds. Eur. J. Org.
Chem. 2009, 2009 (34), 5971−5978.
(38) Cravatt, B. F.; Wright, A. T.; Kozarich, J. W. Activity-Based
Protein Profiling: From Enzyme Chemistry to Proteomic Chemistry.
Annu. Rev. Biochem. 2008, 77 (1), 383−414.
H
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX