Organic Letters
Letter
(10) Liu, Q.; Dong, X.; Li, J.; Xiao, J.; Dong, Y.; Liu, H. ACS Catal.
2015, 5, 6111−6137.
nucleophiles. This strategy offers a new approach for achieving
selectivity in palladium catalyzed cross-coupling reactions and
demonstrates that single-electron redox events at palladium can
be harnessed for new catalytic organic transformations.
(11) Manolikakes, G.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48,
205−209.
(12) Yin, G.; Kalvet, I.; Schoenebeck, F. Angew. Chem., Int. Ed. 2015,
54, 6809−6813.
ASSOCIATED CONTENT
* Supporting Information
■
(13) (a) Proutiere, F.; Aufiero, M.; Schoenebeck, F. J. Am. Chem. Soc.
2012, 134, 606−612. (b) Sperger, T.; Stirner, C. K.; Schoenebeck, F.
Synthesis 2016, 49, 115−120. (c) Kalvet, I.; Magnin, G.; Schoenebeck,
F. Angew. Chem., Int. Ed. 2017, 56, 1581−1585. (d) Aufiero, M.;
Scattolin, T.; Proutiere, F.; Schoenebeck, F. Organometallics 2015, 34,
5191−5195. (e) Inatomi, T.; Koga, Y.; Matsubara, K. Molecules 2018,
23, 140.
S
The Supporting Information is available free of charge on the
Full experimental data, including synthetic procedures,
characterization data, and NMR spectra (PDF)
(14) Troadec, T.; Tan, S.-y.; Wedge, C. J.; Rourke, J. P.; Unwin, P. R.;
Chaplin, A. B. Angew. Chem., Int. Ed. 2016, 55, 3754−3757.
(15) (a) Mazzotti, A. R.; Campbell, M. G.; Tang, P.; Murphy, J. M.;
Ritter, T. J. Am. Chem. Soc. 2013, 135, 14012−14015. (b) Kraatz, H.-B.;
Van der Boom, M. E.; Ben-David, Y.; Milstein, D. Isr. J. Chem. 2001, 41,
163−171. (c) Cho, C. S.; Tanabe, K.; Uemura, S. Tetrahedron Lett.
1994, 35, 1275−1278.
Accession Codes
CCDC 1839868 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge via
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax: +44 1223 336033.
(16) These yields compare favourably with related oxidative cross-
coupling methods for biaryl synthesis. For example, see 97% yield of 5n,
compared with 70% in ref 3c.
AUTHOR INFORMATION
Corresponding Authors
■
(17) As deduced in a recent copper catalyzed oxidative coupling
reaction. See ref 8.
(18) Radicals derived from single-electron oxidation of triaryl-stibanes
have been isolated using a more potent chemical oxidant: Li, T.; Wei,
H.; Fang, Y.; Wang, L.; Chen, S.; Zhang, Z.; Zhao, Y.; Tan, G.; Wang, X.
Angew. Chem. Int. Ed. 2017, 56, 632−636.
ORCID
(19) Formation of Sb(V) reagents, a potential electrophilic aryl source
is unlikely Qin, W.; Yasuike, S.; Kakusawa, N.; Sugawara, Y.; Kawahata,
M.; Yamaguchi, K.; Kurita, J. J. Organomet. Chem. 2008, 693, 109−116.
Nevertheless, to double-check this possibility, Ph3SbF2 was synthesized
and subjected to coupling conditions in the absence of further oxidant.
The associated biaryl product was not formed (see SI).
(20) Fafard, C. M.; Adhikari, D.; Foxman, B. M.; Mindiola, D. J.;
Ozerov, O. V. J. Am. Chem. Soc. 2007, 129, 10318−10319.
(21) For examples of metal-stibides, see: (a) Jones, C.; Junk, P. C.;
Steed, J. W.; Thomas, R. C.; Williams, T. C. J. Chem. Soc., Dalton Trans.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge financial support from the Australian Research
Council, through a DECRA award (J.F.H.) and Discovery
Programs (D.W.L.), the EPSRC (M.J.G.S.; DTP studentship),
and the Royal Society (A.B.C.; UF100592, UF150675).
̈
2001, 3219−3226. (b) Grobe, J.; Golla, W.; Le Van, D.; Krebs, B.; Lage,
M. Organometallics 1998, 17, 5717−5720. (c) Nikonov, G. I.; Kuzmina,
L. G.; Howard, J. A. K. Organometallics 1997, 16, 3723−3725.
(d) Wade, S. R.; Wallbridge, M. G. H.; Willey, G. R. J. Organomet. Chem.
1984, 267, 271−276.
REFERENCES
■
(22) (a) Jones, J. S.; Wade, C. R.; Gabbaï, F. P. Organometallics 2015,
34, 2647−2654. (b) Wade, C. R.; Ke, I.-S.; Gabbaï, F. P. Angew. Chem.,
Int. Ed. 2012, 51, 478−481.
(1) Wu, X.-F.; Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem.,
Int. Ed. 2010, 49, 9047−9050.
(2) (a) Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177−2250.
(b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417−
1492.
(23) (a) Yakelis, N. A.; Bergman, R. G. Organometallics 2005, 24,
3579−3581. (b) Buschmann, W. E.; Miller, J. S.; Bowman-James, K.;
Miller, C. N. Inorg. Synth. 2002, 33, 83−91.
(3) (a) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111,
1780−1824. (b) Knappke, C. E. I.; Grupe, S.; Gaertner, D.; Corpet, M.;
Gosmini, C.; Jacobi von Wangelin, A. Chem. - Eur. J. 2014, 20, 6828−
6842. (c) Yu, J.; Liu, J.; Shao, C.; Zhang, Y. Angew. Chem., Int. Ed. 2015,
54, 4079−4082.
(4) (a) Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan,
D. W. C. Nature 2015, 524, 330−334. (b) Levin, M. D.; Kim, S.; Toste,
F. D. ACS Cent. Sci. 2016, 2, 293−301.
(5) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan,
C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am.
Chem. Soc. 2016, 138, 2174−2177.
(24) For structurally related examples, see: (a) Li, Y.-Z.; Ganguly, R.;
́
Leong, W. K. Eur. J. Inorg. Chem. 2017, 2017, 2541−2546. (b) Balazs,
G.; Breunig, H. J.; Lork, E. Z. Z. Anorg. Allg. Chem. 2003, 629, 1937−
1942. (c) Cowley, A. H.; Norman, N. C.; Pakulski, M.; Bricker, D.;
Russell, D. R. J. Am. Chem. Soc. 1985, 107, 8211−8218. (d) Cowley, A.
H.; Norman, N. C.; Pakulski, M. J. Am. Chem. Soc. 1984, 106, 6844−
6845.
(25) (a) Stambuli, J. P.; Incarvito, C. D.; Buhl, M.; Hartwig, J. F. J. Am.
̈
́
Chem. Soc. 2004, 126, 1184−1194. (b) Remond, E.; Tessier, A.; Leroux,
F. R.; Bayardon, J.; Juge, S. Org. Lett. 2010, 12, 1568−1571.
(6) Liu, C.; Liu, D.; Lei, A. Acc. Chem. Res. 2014, 47, 3459−3470.
(7) (a) Corcoran, E. B.; Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco,
D. A.; Davies, I. W.; Buchwald, S. L.; MacMillan, D. W. C. Science 2016,
353, 279−283. (b) Tellis, J. C.; Primer, D. N.; Molander, G. A. Science
2014, 345, 433−6. (c) Welin, E. R.; Le, C.; Arias-Rotondo, D. M.;
McCusker, J. K.; MacMillan, D. W. C. Science 2017, 355, 380−385.
(8) Ding, S.; Xu, L.; Li, P. ACS Catal. 2016, 6, 1329−1333.
(9) Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D.;
Creech, G.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 11132−11135.
D
Org. Lett. XXXX, XXX, XXX−XXX