COMMUNICATIONS
[2] a) O. Kanie, F. Barresi, Y. Ding, J. Labbe, A. Otter, L. S. Forsberg, B.
Ernst, O. Hindsgaul, Angew. Chem. 1995, 107, 2912 ± 1915; Angew.
Chem. Int. Ed. Engl. 1995, 34, 2720 ± 2722; b) G. J. Boons, B. Heskamp,
F. Hout, ibid. 1996, 108, 3053 ± 3056 and 1996, 35, 2845 ± 2847; c) R.
Liang, L. Yan, J. Loibach, M. Ge, Y. Uozumi, K. Sekanina, N. Horan, J.
Glidersleeve, C. Thompson, A. Smith, K. Biswas, W. C. Still, D.
Kahne, Science 1996, 274, 1520 ± 1522; P. Ayra, R. N. Ben, Angew.
Chem. 1997, 109, 1335 ± 1337; Angew. Chem. Int. Ed. Engl. 1997, 36,
1280 ± 1282.
[3] For the recent advances in solid-support oligosaccharide synthesis, see
a) G. H. Veeneman, S. Notemans, R. M. J. Liskamp, G. A. van der -
Marel, J. H. van Boom, Tetrahedron Lett. 1987, 28, 6695 ± 6698; b) S. P.
Douglas, D. M. Whitfield, J. J. Krepinsky, J. Am. Chem. Soc. 1991, 113,
5095 ± 5097; c) D. M. Whitfield, S. P. Douglas, J. J. Drepinsky, Tetrahe-
dron Lett. 1992, 33, 6795 ± 6798; d) S. J. Danishefsky, K. F. McClure,
J. T. Randolph, R. B. Ruggeri, Science 1993, 260, 1307 ± 1309; e) J. T.
Randolph, S. J. Danishefsky, Angew. Chem. 1994, 106, 1538 ± 1541;
Angew. Chem. Int. Ed. Engl. 1994, 33, 1470 ± 1473; f) M. Schulster, P.
Wang, J. C. Paulson, C.-H. Wong, J. Am. Chem. Soc. 1994, 116, 1135 ±
1136; g) L. Yan, C. M. Taylor, R. Goodnow, Jr., D. Kahne, ibid. 1994,
116, 6593 ± 6594; h) S. P. Douglas, D. M. Whitfield, J. J. Krepinsky, ibid.
1995, 117, 2116 ± 2117, i) J. T. Randolph, K. F. McClure, S. J. Dani-
shefsky, ibid. 1995, 117, 5712 ± 5719; j) J. Rademann, R. R. Schmidt,
Tetrahedron Lett. 1996, 37, 3989 ± 3990; k) M. Adinolfi, G. Barone, L.
De Napoli, A. Iadonisi, G. Piccialli, ibid. 1996, 37, 5007 ± 5010; l) Y. Ito,
O. Kanie, T. Ogawa, Angew. Chem. 1996, 108, 2691 ± 2693; Angew.
Chem. Int. Ed. Engl. 1996, 35, 2510 ± 2512; m) K. C. Nicolaou, N.
Winssinger, J. Pastor, F. DeRoose, J. Am. Chem. Soc. 1997, 119, 449 ±
450; n) L. O. Kononov, Y. Ito. T. Ogawa, Tetrahedron Lett. 1997, 38,
1599 ± 1602; o) R. Rodebaugh. B. Fraser-Reid, H. M. Geysen, ibid.
1997, 38, 7653 ± 7656.
and the mixture of disaccharide acceptors coupled with the
glycosyl donor 33, again with NIS/TMSOTf as the promoter.
The trisaccharide library was released from the polymer after
thin-layer chromatography and MALDI-TOF MS had shown
that all the disaccharides had been consumed. The library was
purified by size-exclusion column chromatography (LH-20;
CH2Cl2/MeOH, 1/1), and the benzyl groups removed by
hydrogenation over Pd(OAc)2 to give the deprotected library
36 (55% overall yield based on the resin loading).[12]
To further examine the quality of this library, a mono-
saccharide compositional analysis was performed. A portion
of the trisaccharide library was treated with aqueous trifluro-
acetic acid (2m) at 1008C for 4 h. Analysis of the resulting
mixture of monosaccharides by HPLC (Dionex with a PA1
column and pulsed amperometric detection) showed that
galactose, glucose, and mannose were present in approxi-
mately the required ratio.[13]
In conclusion, a highly efficient approach for the synthesis
of oligosaccharide and saccharide libraries on a solid-support
has been described. Saccharides can be reliably immobilized
by amide bond formation between a succinimide linker and a
glycine-derivatized TentaGel resin. The products can be
analyzed after each reaction step by MALDI-TOF MS and
thin-layer chromatography by cleavage of the base-labile
ester linker from a small amount of resin. The glycosylation
strategy is two-directional: The immobilized thioglycoside
acts first as a donor, and the product bearing a free hydroxyl
group is used in subsequent glycosylation as an acceptor and
glycosylated with a thioglycosyl donor. A mix-and-split
approach gave a library with a known monosaccharide residue
at the nonreducing end. Immobilized 12 can also act first as a
glycosyl acceptor and the resulting disaccharides can be used
as a glycosyl donor.
[4] a) G. J. Boons, T. Zhu, Synlett 1997, 7, 809 ± 811; b) G. J. Boons, S.
Bowers, D. M. Coe, Tetrahedron Lett. 1997, 38, 3773 ± 3776; c) T. Zhu,
G. J. Boons, ibid. 1998, 39, 2187 ± 2190.
[5] E. Bayer, Angew. Chem. 1991, 103, 117-133; Angew. Chem. Int. Ed.
Engl. 1991, 30, 113 ± 129.
[6] A. Demchenko, T. Stauch, G. J. Boons, Synlett 1997, 7, 818 ± 820.
[7] a) G. H. Veeneman, S. H. van Leeuwen, J. H. van Boom, Tetrahedron
Lett. 1990, 31, 1331 ± 1334; b) P. Konrasllon, U. E. Udodong, B. Fraser-
Reid, ibid. 1990, 31, 4313 ± 4316.
[8] G. J. Boons, G. H. Castle, J. A. Calse, P. Crice, S. V. Ley, C. Pinel,
Synlett 1993, 12, 913 ± 914.
[9] a) The degree of glycine attachment was estimated photometrically
from the amount of Fmoc chromophore released upon treatment of 15
with piperidine/DMF. b) The progress of the coupling reactions was
monitored by the Kaiser test; for details, see Novabiochem Catalog &
Peptide Synthesis Handbook 97/98.
[10] a) D. Tanner, P. Somfai, Tetrahedron 1987, 43, 4395 ± 4406; b) M.
Miyashita, A. Yoshikoshi, P. A. Grieco, J. Org. Chem. 1977, 42, 3772 ±
3774.
Experimental Section
General procedure for NIS/TMSOTf-mediated glycosylation on a solid
support: The polymer-bound thioglycosyl donor (0.1 mmol) was placed in a
round-bottom flask just covered with dichloromethane and allowed to
swell for 15 min. Glycosyl acceptor (0.5 mmol) in dichloromethane (4 mL)
and 4- molecular sieves (200 mg, beads) were added, and the suspension
was shaken at room temperature for 15 min. NIS (0.5 mmol) and TMSOTf
(0.05 mmol) were then added, and the mixture was shaken at room
temperature for 2 ± 4 h. After removal of the molecular sieves by decanting,
the resin was washed successively with DMF (3 Â 20 mL), dichloromethane
(3 Â 20 mL), and methanol (3 Â 20 mL), and dried in vacuo over P2O5 for
24 hours.
[11] K. F. Bernardy, M. B. Floyd, J. Poletto, M. J. Weiss, J. Org. Chem. 1979,
44, 1438 ± 1447.
[12] All saccharides in the library were prepared as individual compounds,
and each trisaccharide was formed as a mixture of anomers in a range
of a/b 1/1 ± 2/1.
[13] Expected product ratios: Gal/Glc/Man: 1/1/0.25, found: 1/0.9/0.25.
Received: February 27, 1998 [Z11529IE]
German version: Angew. Chem. 1998, 110, 2000 ± 2003
Keywords: combinatorial chemistry ´ glycosylations ´ oligo-
saccharides ´ solid-phase synthesis
[1] a) M. A. Gallop, R. W. Barrett, W. J. Dower, S. P. A. Fodor, E. M.
Gordon, J. Med. Chem. 1994, 37, 1233 ± 1251; b) E. M. Gordon, R. W.
Barrett, W. J. Dower, S. P. A. Fodor, M. A. Gallop, ibid. 1994, 37,
1385 ± 1401; c) N. K. Terrett, M. Gardner, D. Gordon, R. J. Kobylecki,
J. Steele, Tetrahedron 1995, 51, 8135 ± 8173; d) F. Balkenhohl, C. von
dem Bussche-Hünnefeld, A. Lansky, C. Zechel, Angew. Chem. 1996,
108, 2436 ± 2488; Angew. Chem. Int. Ed. Engl. 1996, 35, 2288 ± 2337.
1900
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3713-1900 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1998, 37, No. 13/14