2786
A. Kornienko et al. / Tetrahedron: Asymmetry 9 (1998) 2783–2786
4. See for example: Hudlicky, T.; Entwistle, D. A.; Pitzer, K. K.; Thorpe, A. J. Chem. Rev. 1996, 96, 1195–1220. Ley, S. V.;
Parra, M.; Redgrave, A. J.; Sternfeld, F. Tetrahedron 1990, 46, 4995–5026.
5. See for examples: Akiyama, T.; Takechi, N.; Ozaki, S. Tetrahedron Lett. 1990, 31, 1433–1434. Kozikowski, A. P.; Fauq,
A. H.; Rusnak, J. M. ibid. 1989, 30, 3365–3368. Fauq, A. H.; Zaidi, J. H.; Wilcox, R. A.; Varvel, G.; Nahorski, S. R.;
Kozikowski, A. P.; Erneux, C. ibid. 1996, 37, 1917–1920. Tegge, W.; Ballou, C. E. Proc. Natl. Acad. Sci. USA 1989, 86,
94–98.
6. Chen, J.; Dorman, G.; Prestwich, G. D. J. Org. Chem. 1996, 61, 393–397. Jaramillo, C.; Chiara, J.-L.; Martin-Lomas,
M. ibid. 1994, 59, 3135–3141. Jaramillo, C.; Martin-Lomas, M. Tetrahedron Lett. 1991, 32, 2501–2504. Watanabe, Y.;
Mitani, M.; Ozaki, S. Chem. Lett. 1987, 123–126. Sato, K.; Sakuma, S.; Muramatsu, S.; Bokura, M. ibid. 1991, 1473–1474.
Bender, S. L.; Budhu, R. J. Am. Chem. Soc. 1991, 113, 9883–9885. Sato, K.; Bokura, M.; Taniguchi, M. Bull. Chem. Soc.
Jpn 1994, 67, 1633–1640.
7. Chiara, J. L.; Martin-Lomas, M. Tetrahedron Lett. 1994, 35, 2969–2972.
8. Sawada, T.; Shirai, R.; Iwasaki, S. Tetrahedron Lett. 1996, 37, 885–886.
9. Falck, J. R.; Yadagiri, P. J. Org. Chem. 1989, 54, 5851–5852.
10. Reddy, K. K.; Saady, M.; Falck, J. R. J. Org. Chem. 1995, 60, 3385–3390.
11. Kornienko, A.; d’Alarcao, M. Tetrahedron Lett. 1997, 38, 6497–6500.
12. The conditions are critical to the diastereoselectivity. When the reaction was performed with 6 equiv. SmI2 at −78°C in
THF for 30 min followed by slow dropwise addition of aqueous NaHCO3 to the reaction mixture at −78°C, diols 1 and 5
were produced in >20:1 ratio (70% yield). However, if the reaction was performed under standard conditions14c (2 equiv.
SmI2 , 3 equiv. t-BuOH, −78°C to 20°C) prior to quenching, compounds 1 and 5 were formed in 1:2.3 ratio (63% yield).
1
13. Rf (1)=0.18, Rf (5)=0.12. H NMR of 1: δ 7.33–7.18 (15H, m), 4.95 (1H, d, 11.5 Hz), 4.83 (1H, d, 10.8 Hz), 4.74–4.64
(4H, m), 4.16 (1H, dd, 4.2; 2.8 Hz), 4.11 (1H, ψt, 9.0 Hz), 3.94 (1H, ψt, 9.0 Hz), 3.53 (1H, dd, 9.0; 2.8 Hz), 3.43 (1H,
ddd, 9.0; 6.8; 4.2 Hz), 3.33 (1H, ψt, 9.0 Hz), 2.55 (1H, s), 2.48 (1H, d, 6.8 Hz), 1.08 (21H, m). 5 (CDCl3): δ 7.35–7.18
(15H, m), 4.94 (1H, d, 11.2 Hz), 4.91 (1H, d, 10.3 Hz), 4.87 (1H, d, 10.3 Hz), 4.80 (2H, d, 10.3 Hz), 4.77 (1H, d, 11.2
Hz), 4.09 (1H, ψt, 2.4 Hz), 3.89–3.76 (3H, m), 3.54 (1H, dd, 8.0; 4.7 Hz), 3.47 (1H, ψt, 9.2 Hz), 2.54 (1H, s), 2.41 (1H,
d, 5.1 Hz), 1.07 (21H, m).
14. (a) Guidot, J. P.; Le Gall, T.; Mioskowski, C. Tetrahedron Lett. 1994, 35, 6671–6672. (b) Carpintero, M.; Fernandez-
Mayoralas, A.; Jaramillo, C. J. Org. Chem. 1997, 62, 1916–1917. (c) Chiara, J. L.; Cabri, W.; Hanessian, S. Tetrahedron
Lett. 1991, 32, 1125–1128. (d) Chiara, J. L.; Valle, N. Tetrahedron: Asymmetry 1995, 6, 1895–1898.
15. Cottaz, S.; Brimacombe, J. S.; Ferguson, M. A. J. J. Chem. Soc., Perkin Trans. 1 1993, 2945–2951.