J.-J. Brunet et al. / Journal of Organometallic Chemistry 566 (1998) 117–123
123
[4] (a) U. Nagel, E. Kinzel, Chem. Ber. 119 (1986) 1731. (b) I. Toth,
B.E. Hanson, Tetrahedron Assym. 1 (1990) 895.
[5] J.-J. Brunet, R. Chauvin, G. Commenges, B. Donnadieu, P.
Leglaye, Organometallics 15 (1996) 1752.
7.7. N,N,N-trimethyl-diphenyl6alphosium
hydridotricarbonylferrate 7 ·HFe(CO)3
A solution of KHFe(CO)4 (1.12 g, 5.4 mmol) in 2.5
ml of THF was added to a solution of 7·I (2.11 g, 4.62
mmol) in 2.5 ml of THF. After stirring for 15 h, the
brown solution was filtered. Ether (4 ml) was added
and the solution was cooled to −20°C: after 10 days, a
solid had separated, which was dried (2.121 g; 97%).
[6] For quinine derivatives, see: (a) K.N. Gavrilov, I.S. Mikhel,
D.V. Lechkin, G.I. Timofeeva, Phosphorus, Sulfur, Silicon 108
(1996) 285. (b) E.E. Nifantyev, M.K. Gratchev, Tetrahedron
Lett. 36 (1995) 1727.
[7] The previous unreported optical rotation has been measured:
[h]25
D= −7.2° (c=0.19, CH3CN).
[8] J.-J. Brunet, R. Chauvin, F.B. Kindela, D. Neibecker, Tetrahe-
dron Lett. 47 (1994) 8801.
[9] (a) C.E. Ash, T. Delord, D. Simmon, M.Y. Darensbourg,
Organometallics 5 (1986) 17. (b) M. Darensbourg, H. Barros, C.
Borman, J. Am. Chem. Soc. 88 (1977) 1647.
[10] On the synthesis of ene–ammoniums, see for example: E. Elkik,
Bull. Soc. Chim. Fr. (1969) 903.
[11] J. Wymann Jr., J. Am. Chem. Soc. 58 (1936) 1482.
[12] T. Hayashi, M. Konishi, M. Fukushima, K. Kanahira, T. Hioki,
M. Kumada, J. Org. Chem. 48 (1983) 2195.
Elemental
analysis
consistent
with
C23H30FeNO4P(KI)0.2 (504.52): Calcd.: C, 54.50; H,
5.97; N, 2.76%; found: C, 54.53; H, 5.73; N, 2.65%.
[h]25578= +7°, [h]52456= +16° (c=0.2; DMSO). IR
(THF): w(CO)=1939 (m), 1846 (s), 1830 (sh) cm−1
;
w(FeH)=1883 (m) cm−1
.
31P{1H}-NMR: l=195.23
1
2
(Ph2P
6
). H-NMR: l= −8.84 (d, JHP=10.8 Hz, 1H;
FeH); 0.97 (d, 3JHH=6.7 Hz, 3H; CH3
3JHH=7.0 Hz, 3H; CH3
); 2.38 (m, 1H; CH
(s, 9H; N(CH3)3); 3.46 (m, 1H; CHN); 4.10–4.34 (2H;
CH2OP); 7.30–7.75 (5H; C6H5
). 13C{1H}-NMR: l=
17.55 (CH3C); 23.05 (CH3C); 27.30 (CHMe2); 53.47
(N+(CH3)3); 59.63 (d, 2JPC=6.6 Hz; C
H2OP); 80.64 (d,
3JPC=9.2 Hz; C
HN); 128.54–146.05 (aromatic C with
6
); 1.05 (d,
6 Me2); 3.08
[13] A. Mortreux, F. Petit, G. Buono, G. Pfeiffer, Bull. Soc. Chim.
Fr. (1987) 631.
6
[14] Although the obtained dimethylvalinol is optically active (h2D5
=
6
6
−3.2° (neat)), the possibility of a partial epimerization through
an internal iminium intermediate could be a priori considered:
6
6
6
6
6
H2Cꢀ+NMeC*H(i-Pr)CH2OH = Me2N+ꢀC(i-Pr)CH2OH
6
6
6
Dimethylation of (S)-valine by H2CO/H2/Pt–C followed by
LiAlH4 reduction of the acid led to (−)-valinol with h2D5= −
3.68° (neat), but no precision on the e.e. was given [11]. Previous
studies, however, indicated that substitution at asymmetric h-
carbons of primary amines is not sufficient to bring about a
significant isomerization unless this carbon is benzylic (methyla-
tion of optically pure 1-phenylethylamine occurs with 61% e.e.:
(a) A.C. Cope, E. Ciganeck, L.J. Fleckenstein, M.A.P.
Meisinger, J. Am. Chem. Soc. 82 (1960). Eschweiler-Clarke
a complex degenerated spectrum of four singlets for
PhC+four pairs of diastereoisomeric doublets for
2
Ph2P); 223.12 (d, JPC=11.2 Hz; gated spectrum: dd,
2JCH=12.6 Hz; C
6 O).
Acknowledgements
conditions have also been used for dimethylation of
D-penicil-
lamine which is structurally closely related to valinol: the e.e. is
82% and the authors ‘suspect that partial racemization occurs,
although this has neither been proved nor have exhaustive
attempts been made to avoid racemization’. (b) J.H. Griffin,
R.M. Kellogg, J. Org. Chem. 50 (1985) 3261. A similar e.e. for
5 is likely.
The authors wish to thank the Centre National de la
Recherche Scientifique, and Ms L. Noe´ for performing
elemental analyses.
[15] C.E. Ash, M.Y. Darensbourg, M.B. Hall, J. Am. Chem. Soc. 109
(1987) 4173.
References
[16] C.E. Ash, C.M. Kim, M.Y. Darensbourg, A.L. Rheingold, In-
org. Chem. 26 (1987) 1357.
[1] (a) R.T. Smith, R.K. Ungar, L.J. Sanderson, M.C. Baird,
Organometallics 2 (1983) 1138. (b) E. Renaud, R.B. Russel, S.
Fortier, S.J. Brown, M.C. Baird, J. Orgonomet. Chem. 419
(1991) 403. (c) E. Renaud, M.C. Baird, J. Chem. Soc. Dalton
Trans. (1992) 2905.
[2] See for example: (a) W.A. Herrmann, C.W. Kohlplainter,
Angew. Chem. Int. Ed. Engl. 32 (1993) 1524. (b) I.T. Horvath
(Ed.), Catalysis in Water. J. Mol. Cat. A 116 (1997). (c) H.
Gulyas, P. Arva, J. Bakos, J. Chem. Soc. Chem. Commun.
(1997) 2385.
[3] For recent examples, see: (a) D.J. Brauer, J. Fisher, S. Kucken,
K.P. Langhans, O. Stelzer, N. Weferling, Z. Naturforsch, B.
Chem. Soc. 49 (1994) 1511. (b) I. Kovacs, M.C. Baird, J.
Organomet. Chem. 502 (1995) 87. (c) B. Mohr, D.M. Lynn,
R.H. Grubbs, Organometallics 15 (1996) 4317.
[17] In 3a·HFe(CO)3, the electrostatic pairing in solution has been
indicated by
a measure of a
large 1H-NOE (36%) from
[N(CH3)3]+ onto [FeH]− [5].
[18] J.-J. Brunet, G. Commenges, F.B. Kindela, D. Neibecker,
Organometallics 11 (1992) 3023.
[19] S.C. Kao, M.Y. Darensbourg, W. Schenk, Organometallics 3
(1984) 871.
[20] M.Y. Darensbourg, J.M. Hanckel, Organometallics 1 (1982) 82.
[21] J.-J. Brunet, R. Chauvin, B. Donnadieu, P. Leglaye, D.
Neibecker, submitted for publication in this journal (1998).
[22] J.-J. Brunet, G. Commenges, F.B. Kindela, D. Neibecker,
Organometallics 11 (1992) 1343.
[23] J. Chiffre, S. Huguet, P. Leglaye, R. Chauvin, unpublished
results.
.