S. Gauthier et al. / Inorganic Chemistry Communications 7 (2004) 708–712
711
[4] L. Quebatte, R. Scopelliti, K. Severin, Angew. Chem., Int. Ed. 43
(2004) 1520–1524.
[5] For an overview see: K. Severin, Chem. Eur. J. 8 (2002) 1515–
1518.
[6] M.I. Bruce, M.Z. Iqbal, F.G.A. Stone, J. Organomet. Chem. 40
(1972) 393–401.
[7] (a) A.A. Kiffen, C. Masters, J.P. Visser, J. Chem. Soc., Dalton
Trans. (1975) 1311–1315;
(b) C. Masters, J.P. Visser, J. Chem. Soc., Chem. Commun.
(1974) 932–933.
ꢀ
[8] (a) E. Corradi, N. Masciocchi, G. Palyi, R. Ugo, A. Vizi-Orosz,
C. Zucchi, A. Sironi, J. Chem. Soc., Dalton Trans. (1997)
4651–4655;
(b) J.D. Scott, R.J. Puddephatt, Organometallics 5 (1986) 1253–
1257;
(c) H.C. Clark, G. Ferguson, V.K. Jain, M. Parvez, Inorg. Chem.
25 (1986) 3808–3811;
(d) H.C. Clark, G. Ferguson, V.K. Jain, M. Parvez, Inorg. Chem.
24 (1985) 1477–1482.
€
[9] (a) M. Ohm, A. Schulz, K. Severin, Eur. J. Inorg. Chem. (2000)
2623–2629;
(b) K. Polborn, K. Severin, J. Chem. soc., Dalton Trans. (1999)
759–764;
Fig. 5. ORTEP representation of the molecular structure of 8 in the
crystal. The hydrogen atoms are not shown for clarity. Selected bond
(c) K. Polborn, K. Severin, Eur. J. Inorg. Chem. (1998) 1187–
1192;
ꢁ
lengths (A) and angles (°): Ru1–As1 2.4212(7), Ru2–As2 2.4161(7),
(d) K. Severin, K. Polborn, W. Beck, Inorg. Chim. Acta 240
(1995) 339–346.
Ru1–Cl4 2.4093(12), Ru1–Cl7 2.3182(12), Ru2–Cl10 2.3060(12), Ru2–
Cl4 2.4222(12), Rh1–Cl1 2.4703(14), Rh1–Cl2 2.4723(13), Rh1–Cl3 2–
4520(12), Ru1ꢄ ꢄ ꢄRu2 3.1367(6), Rh1ꢄ ꢄ ꢄRh2 3.1989(6); As1–Ru1–Cl5
176.15(4); Cl6–Ru1–Cl7 173.35(5).
[10] A.C. da Silva, H. Piotrowski, P. Mayer, K. Polborn, K. Severin, J.
Chem. Soc., Dalton Trans. (2000) 2960–2963.
[11] S. Gauthier, L. Quebatte, R. Scopelliti, K. Severin, Chem. Eur. J.
(2004) in press.
large extent on the reaction partner. For applications in
homogeneous catalysis, the heterobimetallic Rh–Ru
complexes 5 and 6 appear to be of special interest.
[12] T.A. Stephenson, G. Wilkinson, J. Inorg. Nucl. Chem. 28 (1966)
945–956.
[13] R. Contreras, G.A. Heath, A.J. Lindsay, T.A. Stephenson, J.
Organomet. Chem. 179 (1979) C55–C60.
[14] G. Giordano, R.H. Crabtree, Inorg. Synth. 28 (1990) 88–
90.
Supplementary material
[15] S. Sprouse, K.A. King, P.J. Spellane, R.J. Watts, J. Am. Chem.
Soc. 106 (1984) 6647–6653.
An experimental section including detailed synthetic
procedures and elemental analyses is available from the
authors on request. CCDC 232760–CCDC 232764
contains supplementary crystallographic data for this
paper. These data can be obtained free of charge via
Cambridge Crystallographic Data Centre, 12 Union
Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-
[16] Crystal data for 5 ꢀ C6H6: C50H48As2Cl4RhRu, Mr ¼ 1144:50,
monoclinic, space group P21=c, a ¼ 18:841ð8Þ, b ¼ 12:562ð4Þ,
ꢁ
c ¼ 20:343ð6Þ A, a ¼ 90°, b ¼ 111:79ð4Þ°, c ¼ 90°, V ¼ 4471ð3Þ
3
A , Z ¼ 4, qcalcd ¼ 1:700 g cmꢂ3, l ¼ 2:450 mmꢂ1, T ¼ 140ð2Þ K,
ꢁ
26,552 reflections collected, 7874 independent reflections,
Rint ¼ 0:1001, Final R indices [I > 2rðIÞ]: R1 ¼ 0:0879, wR2 ¼
0:2391. Crystal data for 6 ꢀ 2 CH2Cl2: C60H50As2Cl8N2RhRu,
Mr ¼ 1436:44, monoclinic, space group P21=c, a ¼ 13:0860ð13Þ,
ꢁ
b ¼ 28:510ð3Þ, c ¼ 16:261ð17Þ A, a ¼ 90°, b ¼ 104:349ð9Þ°,
3
c ¼ 90°, V ¼ 5877:8ð10Þ A , Z ¼ 4, qcalcd ¼ 1:623 gcmꢂ3
,
ꢁ
l ¼ 2:059 mmꢂ1
,
T ¼ 140ð2Þ K, 33,754 reflections collected,
9841 independent reflections, Rint ¼ 0:1409, Final
[I > 2rðIÞ]: R1 ¼ 0:1099, wR2 ¼ 0:2609.
R indices
References
[17] Data reduction and cell refinement was performed with CrysAlis
RED 1.6.9 (Oxford Diffraction Ltd., Abingdon, Oxfordshire,
OX14 1 RL, UK, 2002). Absorption correction was applied to all
data sets using an empirical method. All structures were refined
using the full-matrix least-squares on F2 with all non-H atoms
anisotropically defined. The hydrogen atoms were placed in
calculated positions using the riding model with Uiso ¼ aꢃUeq(C)
(where a is 1.5 for methyl hydrogen atoms and 1.2 for others, C is
the parent carbon atom). Space Group Determination, structure
refinement and geometrical calculations were carried out on all
structures with the SHELXTL software package, release 5.1
[1] T. Weskamp, F.J. Kohl, W. Hieringer, D. Gleich, W. Herrmann,
Angew. Chem., Int. Ed. 38 (1999) 2416–2419.
[2] (a) For other mixed, halogeno-bridged complexes, which are able
to catalyze metathesis reactions see: B. De Clercq, F. Verpoort,
Adv. Synth. Catal. 344 (2002) 639–648;
€
€
(b) A. Furstner, O. Guth, A. Duffels, G. Seidel, M. Liebl, B.
Gabor, R. Mynott, Chem. Eur. J. 7 (2001) 4811–4820;
€
(c) A. Furstner, A.F. Hill, M. Liebl, J.D.E.T. Wilton-Ely, Chem.
Commun. (1999) 601–602;
€
(G.M. Sheldrick, University of Gottingen, 1997; Bruker AXS,
Inc., Madison, Wisconsin, 53719, USA, 1997).
(d) E.L. Dias, R.H. Grubbs, Organometallics 17 (1998) 2758–
2767.
€
[18] H. Werner, O. Nurnberg, J. Wolf, Z. Anorg. Allg. Chem. 627
(2001) 693–698.
[3] A.C. da Silva, H. Piotrowski, P. Mayer, K. Polborn, K. Severin,
Eur. J. Inorg. Chem. (2001) 685–691.