Total Synthesis of Bryostatin 2
J. Am. Chem. Soc., Vol. 121, No. 33, 1999 7541
ultrapotent (picomolar) binding to the phorbol ester binding
site,18 and disruption of phorbol ester-induced tumor promo-
tion.19 These effects are noteworthy for two reasons: (i)
antineoplastic agents typically antagonize the immune and
hematopoietogenic systems,17 but bryostatin potentiates them;
and (ii) exogenous agonists of PKC, such as the phorbol esters,
are usually tumor promoters, but bryostatin acts as an antitumor
agent.20
The combined antitumor, immunopotentiating, and hemato-
potentiating properties of bryostatin 1 made it a promising
candidate for clinical trials, and the results from the Phase I
study (which began in early 1991) have demonstrated that
bryostatin 1 may be administered safely (muscle soreness was
the dose-limiting toxicity) and can induce a tumor response with
a wide range of tumors.21 More recent tests have shown that
bryostatin may synergize with both tamoxifen (in vitro) and
paclitaxel (in vivo),22 and future clinical trials will probably
assess the use of these combination therapies. The U.S. National
Cancer Institute has moved bryostatin into Phase II trials against
non-Hodgkin’s lymphoma, melanoma, and renal cancer.14
Synthesis Plan. The unusual structure, potent biological
activity, and relative scarcity of the bryostatins make them
attractive targets for total synthesis.23 Accordingly, several
groups,23,24 including our own,25 have initiated programs directed
toward the total synthesis of the bryostatins. Most notable among
these efforts is the total synthesis of bryostatin 7 reported by
the Masamune group.26
Figure 2. X-ray crystal structure of bryostatin1.9b
mass spectrometry.9b,10 The absolute configuration of bryostatin
1 was tentatively assigned on the basis of the small anomalous
dispersion effects of oxygen and carbon in the crystal structure9b,11
and later confirmed via analysis of the heavy-atom dispersion
effects in the X-ray structure of a p-bromobenzoate derivative.12
As can be seen in Figure 2, bryostatin 1 displays several
distinctive architectural features. The macrolide houses three
pyran rings (two of which are hemiketals), a 20-membered
lactone, two exocyclic R,â-unsaturated esters (C13, C21), one
trans olefin (C16-C17), and an unusual octadienyl ester side
chain (C20). The three-dimensional structure is organized about
the C3 hydroxyl group, which serves as a hydrogen bond
acceptor for the C19 lactol (O3-H-O19 distance of 2.71 Å) and
a bifurcated hydrogen bond donor for the O5 and O11 ether
oxygens (O3-H-O distances of 3.00 and 2.84 Å, respectively).9b
The solution structure of the C20-desoxymacrolide bryostatin
10 (1e) has been determined recently using 2D-NMR ROESY
technique and shows close homology with the solid-state
structure depicted in Figure 2.13 This well-defined tertiary
structure has important ramifications for the solution reactivity
of the bryostatins (vide infra).
Our plan for the synthesis of bryostatin 1 is outlined in
Scheme 1. Initial scission (transform T1) of the O25-C1 lactone
bond (macrocyclization transform27), followed by further dis-
connection at the C9-C10 C-glycoside bond (sulfone alkylation
and hydrolysis28) and the C16-C17 trans olefin (Julia-Lythgoe
(17) (a) Tallant, E. A.; Smith, J. B.; Wallace, R. W. Biochim. Biophys.
Acta 1987, 929, 40-46. (b) May, W. S.; Sharkis, S. J.; Esa, A. H.; Gebbia,
V.; Kraft, A. S.; Pettit, G. R.; Sensenbrenner, L. L. Proc. Natl. Acad. Sci.
U.S.A. 1987, 84, 8483-8487. (c) Grant, S.; Pettit, G. R.; McCrady, C. Exp.
Hematol. 1992, 20, 34-42. (d) Leonard, J. P.; May, W. S.; Ihle, J. N.;
Pettit, G. R.; Sharkis, S. J. Blood 1988, 72, 1492-1496. (e) Sharkis, S. J.;
Jones, R. J.; Bellis, M. L.; Demetri, G. D.; Griffin, J. D.; Civin, C.; May,
W. S. Blood 1990, 76, 716-720. (f) McCrady, C. W.; Staniswalis, J.; Pettit,
G. R.; Howe, C.; Grant, S. Br. J. Haematol. 1991, 77, 5-15.
(18) (a) Smith, J. B.; Smith, L.; Pettit, G. R. Biochem. Biophys. Res.
Commun. 1985, 132, 939-945. (b) Berkow, R. L.; Kraft, A. S. Biochem.
Biophys. Res. Commun. 1985, 131, 1109-1116. (c) DeVries, D. J.; Herald,
C. L.; Pettit, G. R.; Blumberg, P. M. Biochem. Pharm. 1988, 37, 4069-
4073.
Biological Activity. The bryostatins are a family of potent
antitumor agents,14 and bryostatin 1 exhibits significant in vivo
antineoplastic activity against murine leukemia, B-cell lym-
phoma, reticulum cell sarcoma, ovarian carcinoma, and mela-
noma.3,14,15 The bryostatins also display a diverse range of other
biological effects in vitro and in vivo, including stimulation of
T-cells and the immune system,16 stimulation of the hemato-
poietic system,17 activation of protein kinase C (PKC) through
(19) Hennings, H.; Blumberg, P. M.; Pettit, G. R.; Herald, C. L.; Shores,
R.; Yuspa, S. Carcinogenesis 1987, 8, 1343-1346.
(20) It should be noted that 12-deoxy-13-acyl phorbol esters also bind
to PKC and induce an antitumor response. As with the bryostatins, a
mechanism for this discrepancy is under investigation, cf.: Szallasi, Z.;
Krsmanovi, L.; Blumberg, P. M. Cancer Res. 1993, 53, 2507-2512.
(21) (a) Prendiville, J.; Crowther, D.; Thatcher, N.; Woll, P. J.; Fox, B.
W.; McGown, A.; Testa, N.; Stern, P.; McDermott, R.; Potter, M.; Pettit,
G. R. Br. J. Cancer 1993, 68, 418-424. (b) Philip, P. A.; Rea, D.; Thavasu,
P.; Carmichael, J.; Stuart, N. S. A.; Rockett, H.; Talbot, D. C.; Ganesan,
T.; Pettit, G. R.; Balkwill, F.; Harris, A. L. J. Natl. Cancer Inst. 1993, 85,
1812-1818. (c) Scheid, J.; Prendiville, J.; Jayson, G.; Crowther, D.; Fox,
B.; Pettit, G. R. Cancer Immunol. Immunother. 1994, 39, 223-230. (d)
Jayson, G. C.; Crowther, D.; Prendiville, J.; McGown, A. T.; Scheid, C.;
Stern, P.; Young, R.; Brenchley, P.; Chang, J.; Owens, S.; Pettit, G. R. Br.
J. Cancer 1995, 72, 461-468. (e) Varterasian, M. L.; Mohammad, R. M.;
Eilender, D. S.; Hulburd, K.; Rodriguez, D. H.; Pemberton, P. A.; Pluda, J.
M.; Dan, M. D.; Pettit, G. R.; Chen, B. D.; Al-Katib, A. M. J. Clin. Oncol.
1998, 16, 56-62. (f) Grant, S.; Roberts, J.; Poplin, E.; Tombes, M. B.;
Kyle, B.; Welch, D.; Carr, M.; Bear, H. D. Clin. Cancer Res. 1944, 4,
611-618.
(10) For a revision of the 1H and 13C NMR assignments of bryostatin 1,
cf.: Schaufelberger, D. E.; Chmurny, G. N.; Koleck, M. P. Magn. Reson.
Chem. 1991, 29, 366-374.
(11) Engel, D. W. Acta Crystallogr., Sect. B 1972, B28, 1498-1509.
(12) Pettit, G. R.; Herald, D. L.; Gao, F.; Sengupta, D.; Herald, C. L. J.
Org. Chem. 1991, 56, 1337-1340.
(13) Kamano, Y.; Zhang, H.; Morita, H.; Itokawa, H.; Shirota, O.; Pettit,
G. R.; Herald, D. L.; Herald, C. L. Tetrahedron 1996, 52, 2369-2376.
(14) Reviews: (a) Kraft, A. S. J. Natl. Cancer Inst. 1993, 85, 1790-
1792. (b) Pettit, G. R. J. Nat. Prod. 1996, 59, 812-821. (c) Stone, R. M.
Leukemia Res. 1997, 21, 399-401. (d) Information on the status of
bryostatin clinical trials may be accessed via the Internet at http://
cancernet.nci.nih.gov/prot/protsrch.shtml.
(15) Schuchter, L. M.; Esa, A. H.; May, W.; Laulis, M. K.; Pettit, G.
R.; Hess, A. D. Cancer Res. 1991, 51, 682-687.
(16) (a) Trenn, G.; Pettit, G. R.; Takayama, H.; Hu-Li, J.; Sitkovsky,
M. V. J. Immunol. 1988, 140, 433-439. (b) Hess, A. D.; Silanksis, M. K.;
Esa, A. H.; Pettit, G. R.; May, W. S. J. Immunol. 1988, 141, 3263-3269.
(c) Tuttle, T. M.; Inge, T. H.; Bethke, K. P.; McCrady, C. W.; Pettit, G. R.;
Bear, H. D. Cancer Res. 1992, 52, 548-553. (d) Mohr, H.; Pettit, G. R.;
Plessing-Menze, A. Immunobiology 1987, 175, 420. (e) Drexler, H. G.;
Gignac, S. M.; Pettit, G. R.; Hoffbrand, A. V. Eur. J. Immunol. 1990, 20,
119-127.
(22) (a) McGown, A. T.; Jayson, G.; Pettit, G. R.; Haran, M. S.; Ward,
T. H.; Crowther, D. Br. J. Cancer 1998, 77, 216-220. (b) Koutcher, J. A.;
Matei, C.; Zakian, K.; Ballon, D.; Schwartz, G. K. Proc. Am. Assoc. Cancer
Res. 1998, 39, 191 (No. 1304).
(23) For a detailed review of the literature prior to early 1995, cf.:
Norcross, R. D.; Paterson, I. Chem. ReV. 1995, 95, 2041-2114.