780
K. Egusa et al.
LETTER
D. J. Am. Chem. Soc. 1994, 116, 6953. (d) Douglas, S. P.;
Whitfield, D. M.; Krepinsky, J. J. J. Am. Chem. Soc. 1995,
117, 2116. (e) Randolph, J. T.; McClure, K. F.; Danishefsky,
S. J. J. Am. Chem. Soc. 1995, 117, 5712. (f) Ito, Y.; Kanie, O.;
Ogawa, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 2510.
(g) Rademann, J.; Schmidt, R. R. Tetrahedron Lett. 1996, 37,
3989. (h) Nicolaou, K. C.; Winssinger, N.; Pastor, J.;
DeRoose, F. J. Am. Chem. Soc. 1997, 119, 449. (i) Rademann,
J.; Schmidt, R. R. J. Org. Chem. 1997, 62, 3650.
(91 mg, 400 µmol), acetic acid (100 µL) and water (100 µL)
were added and the mixture was shaken at r.t. for 3 h, then
filtered. To the filtrate was added a solution of L-ascorbic acid
(70 mg, 400 µmol) in methanol and the mixture was stirred at
r.t. for 5 min. After passing through a column of ion exchange
resin Amberlite® IRA-68 (2 × 5 cm), the mixture was
concentrated in vacuo. The residue was dissolved in
dichloromethane and charged on a short silica gel column
(1 × 2 cm). After flushing the column with 5 mL of
dichloromethane, the product was eluted with hexane/ethyl
acetate 1:1 and the solvent was removed in vacuo to give
disaccharide 5 (45 mg, 48 µmol, 72% yield) as a colorless oil.
HPLC (column: Inertsil ODS-2 5 µm, 4.6 × 150 mm, 30 °C,
mobile phase: acetonitrile/water 85:15, flow rate: 1.0 mL/min,
detection: UV210 nm) Rt = 6.2 min., purity: 96% (calcd. from
the peak area); 1H NMR (270 MHz, CDCl3): δ = 7.95-7.80 (m,
6H), 7.56-7.49 (m, 1H), 7.44-7.20 (m, 21H), 7.09-7.05 (m,
2H), 5.89 (t, 1H, J = 9.57 Hz), 5.84 (dd, 1H, J = 9.57, 7.92
Hz), 5.50 (t, 1H, J = 9.57 Hz), 4.90 (d, 1H, J = 10.89 Hz), 4.81
(d, 1H, J = 7.59 Hz), 4.73 (d, 1H, J = 12.21 Hz), 4.70 (d, 1H,
J = 10.89 Hz), 4.60 (d, 1H, J = 12.21 Hz), 4.85 (d, 1H,
J = 9.21), 4.52 (d, 1H, J = 3.63 Hz), 4.33 (d, 1H, J = 11.21),
4.13-4.08 (m, 1H), 3.90 (t, 1H, J = 9.24), 3.78-3.70 (m, 5H),
3.45 (dd, 1H, J = 9.57, 3.63 Hz), 3.42 (t, 1H, J = 9.90), 3.23 (s,
3H), 2.50 (broad, 1H); ESI-MS m/z: Calcd for C55H54NaO14
[(M+Na)+] 961.3, found 961.4.
(j) Rodebaugh, R.; Joshi, S.; Fraser-Reid, B.; Geysen, H. M. J.
Org. Chem. 1997, 62, 5660. (k) Zheng, C.; Seeberger, P. H.;
Danishefsky, S. J. J. Org. Chem. 1998, 63, 1126. (l) Zheng, C.;
Seeberger, P. H.; Danishefsky, S. J. Angew. Chem., Int. Ed.
Engl. 1998, 37, 786. (m) Heckel, A.; Mross, E.; Jung, K.-H.;
Rademann, J.; Schmit, R. R. Synlett 1998, 171. (n) Rademann,
J.; Geyer A.; Schmidt, R. R. Angew. Chem., Int. Ed. Engl.
1998, 37, 1241. (o) Nicolaou, K. C.; Watanabe, N.; Li, J.;
Pastor, J.; Winssinger, N. Angew. Chem., Int. Ed. Engl. 1998,
37, 1559. (p) Doi, T.; Sugiki, M.; Yamada, H.; Takahashi, T;
Porco, Jr., J. A. Tetrahedron Lett. 1999, 40, 2141. (q) Fukase,
K.; Nakai, Y.; Egusa, K.; Porco, Jr., J. A.; Kusumoto, S.
Synlett 1999, 1074. (r) Egusa, K.; Fukase, K.; Nakai, Y.;
Kusumoto, S. Synlett 2000, 27.
(7) Commercially available from Argonaut Technologies, http://
(8) The macroporous resin, ArgoPore™, is heterogeneous in the
pore size. It was thought that the glycosylation in smaller
pores was interfered by steric hindrance of the resin itself and
some of the glycosyl acceptors remained unchanged.
(9) Commercially available from Wako Pure Chemicals
(5) (a) Takahashi, T.; Adachi, M.; Matsuda, A.; Doi, T.
Tetrahedron Lett. 2000, 41, 2599. (b) Zhang, Z.; Ollmann, I.
R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am.
Chem. Soc. 1999, 121, 734.
(6) For recent advances in solid phase chemical synthesis of
oligosaccharide see: (a) Verduyn, R.; van der Klein, P. A. M.;
Douwes, M.; van der Marel, G. A.; van Boom, J. H. Recl.
Trav. Chim. Pays-Bas 1993, 112, 464. (b) Danishefsky, S. J.;
McClure, K. F.; Randolph, J. T.; Ruggeri, R. B. Science 1993,
260, 1307. (c) Yan, L.; Taylor, C. M.; Goodnow, R.; Kahne,
Article Identifier:
1437-2096,E;2001,0,06,0777,0780,ftx,en;Y07801ST.pdf
Synlett 2001, No. 6, 777–780 ISSN 0936-5214 © Thieme Stuttgart · New York