HO
OH
Notes and References
N3
i
† E-mail: george.fleet@chem.ox.ac.uk
HO2C
O
HO
OH
HO
OH
3
1 J. P. McDevitt and P. T. Lansbury, J. Am. Chem. Soc., 1996, 118, 3818;
P.S. Ramamoorthy and J. Gervay, J. Org. Chem., 1997, 62, 7801; M. J.
Sofia, R. Hunter, T. Y. Chan, A. Vaughan, R. Dulina, H. Wang and D.
Gange, J. Org. Chem., 1998, 63, 2802.
2 E. G. von Roedern, E. Lohof, G. Hessler, M. Hoffmann and H. Kessler,
J. Am Chem. Soc., 1996, 118, 10 156.
H
R2
+
N
R1O2C
O
O
HO
OH
O
13 R1 = Pri, R2 = N3
14 R1 = H, R2 = N3
15 R1 = Pri, R2 = NH2
ii
NH2
iii
PrO2iC
O
3 K. C. Nicolaou, H. Florke, M. G. Egan, T. Barth and V. A. Estevez,
Tetrahedron Lett., 1995, 36, 1775.
4
iv
4 J. Gervay, T. M. Flaherty and C. Nguyen, Tetrahedron Lett., 1997, 38,
1493 and references cited therein.
R3O
OR3
R3O
OR3
R3O
OR3
5 C. Muller, E. Kitas and H. P. Wessel, J. Chem. Soc. Chem. Commun.,
1995, 2425; B. Drouillat, B. Kellam, G. Dekany, M. S. Starr and I. Toth,
Bioorg. Med. Chem. Lett., 1997, 7, 2247.
6 L. Poitout, Y. le Merrer and J.-C. Depazay, Tetrahedron Lett., 1995, 36,
6887.
7 S. S. Choi, P. M. Myerscough, A. J. Fairbanks, B. M. Skead, C. J. F.
Bichard, S. J. Mantell, J. C. Son, G. W. J. Fleet, J. Saunders and D.
Brown, J. Chem. Soc., Chem. Commun., 1992, 1605.
8 J. R. Wheatley, C. J. F. Bichard, S. J. Mantell, J. C. Son, D. J. Hughes,
G. W. J. Fleet and D. Brown, J. Chem. Soc., Chem. Commun., 1993,
1065.
9 C. J. F. Bichard, T. W. Brandstetter, J. C. Estevez, G. W. J. Fleet, D. J.
Hughes and J. R. Wheatley, J. Chem. Soc., Perkin Trans. 1, 1996,
2151.
10 O. T. Schmidt, Methods Carbohydr. Chem., 1963, 2, 319; A. R.
Beacham, I. Bruce, S. Choi, O. Doherty, A. J. Fairbanks, G. W. J. Fleet,
B. M. Skead, J. M. Peach, J. Saunders and D. J. Watkin, Tetrahedron:
Asymmetry, 1991, 2, 883; S. Morgenlie, Acta Chem. Scand., 1972, 26,
2518; D. Horton and J. S. Jewel, Carbohydr. Res., 1966, 2, 251;
J. A. J. M. Vekemans, J. Boerekamp, E. F. Godefroi and G. J. F. Chit-
tenden, Recl. Trav. Chim. Pays-Bas, 1985, 104, 266.
H
H
N
N
R2
R1O2C
O
O
O
O
2O
16
17
18
R
R
R
1 = Pri, R2 = N3, R3 = Ac
1 = Me, R2 = N3, R3= H
1 = Pri, R2 = NH2, R3 = Ac
v
iii
iv
OAc
AcO
OAc
AcO
O
AcO
O
OAc
H
H
N3
N
N
PriO2C
O
O
O
4
19
Scheme 2 Reagents and conditions: i, EDCI, HOBt, Pri2NEt, DMF; ii, 0.5
M
aq. NaOH, dioxane, then Amberlite IR-120 (H+); iii, H2, Pd, PriOH; iv, 14
(1 equiv.), EDCI, HOBt, Pri2NEt, DMF, then Ac2O, Py; v, NaOMe, MeOH,
then Amberlite IR-120 (H+)
the free acid 14 in quantitative yield. Additionally the
N-terminal azide in 13 was reduced with H2 in the presence of
Pd-C to afford the amine 15. Coupling of the dimeric building
blocks 14 and 15 was performed using EDCI in DMF in the
presence of HOBt. The reaction mixture was treated with Ac2O
in pyridine to facilitate isolation of the tetramer 1615 (55% from
13) from which the acetate groups can be removed with NaOMe
in MeOH to afford the deprotected carbopeptoid 17 in
quantitative yield. Hydrogenation of the tetramer 16 in the
presence of Pd gave the N-terminal amine 18 which was
coupled crude to the dimeric acid 14 using EDCI in DMF in the
presence of HOBt. Treatment of the reaction mixture with Ac2O
in pyridine gave the hexamer 19 in 68% yield from the tetramer
16.
11 I. Kalwinsh, K-H. Metten, and R. Brückner, Heterocycles, 1995, 409,
939.
12 J. C. Estevez, A. J. Fairbanks, K. Y. Hsia, P. Ward and G. W. J. Fleet,
Tetrahedron Lett., 1994, 35, 3361.
13 Selected data for 2: dH(500 MHz, CD3CN) 3.58 (1H, d, J 3.7, OH-4),
3.64–3.74 (3H, m, H-6, H-6A, OH-6), 3.70 (3H, s, CO2Me), 3.88 (1H, q,
J 3.2, H-5), 4.03–4.05 (1H, m, H-4), 4.12 (1H, ddd, J 4.3, 1.9, 8.4, H-3),
4.33 (1H, d, J 8.4, OH-3), 4.59 (1H, d, J 4.3, H-2).
14 Selected data for 11: dH(500 MHz, CD3OD) 1.27 (6H, t, J 6.2, Me2CH),
3.38 (1H, dd, J 4.7, 12.7, H-6A), 3.62, (1H, dd, J 7.5, 12.7, H-6A),
3.91–3.94 (1H, m, H-5), 3.95 (1H, dd, J 2.8, 5.7, H-4), 4.26 (1H, dd, J
2.8, 5.1, H-3), 4.61 (1H, d, J 5.1, H-2), 5.07 (1H, septet, J 6.2,
Me2CH).
15 Selected data for 16 (500 MHz, CDCl3, 298 K):
The ease with which highly functionalised tetrahydrofurans,
such as 4, can be synthesised is likely to offer opportunities for
the production of a range of carbohydrate amino acid building
blocks with specific conformational preferences suitable for
incorporation into combinatorial amide libraries. The diversity
of possible structures afforded by a carbohydrate template in
terms of backbone stereochemistries and protecting group
manipulations allows formation of hydrophobic or hydro-
philic—and thus water soluble—derivatives. Efficient unpro-
tected oligomerisation to give compounds with well-defined
secondary structure emphasizes the versatility of the sugar
amino acid building block and alludes to the possibility of a
more rational design tailored to specific applications. The
following paper provides evidence for conformational prefer-
ences of the hexamer 19 and the tetramer 16; NMR and
molecular dynamics indicate that both adopt a well-defined
secondary structure based around a repeating b-turn mimic
stabilised by intramolecular hydrogen bonds.16
Ring A
Ring B
Ring C
Ring D
dC(C1)
dH(C2)
dC(C2)
dH(C3)
dC(C3)
dH(C4)
dC(C4)
dH(C5)
dC(C5)
dH(C6)
167.81
4.669
81.02
5.646
76.08
4.904
78.40
4.153
85.00
3.708/
3.461
51.43
—
168.11
4.692
81.74
5.559
75.57
4.837
78.06
4.027
85.18
4.027/
3.224
41.28
6.910
167.68
4.708
81.38
5.495
76.01
5.003
77.68
4.123
85.00
3.861/
3.228
41.28
8.025
167.15
4.687
78.93
5.475
76.66
5.250
77.57
4.055
83.19
3.781/
3.481
40.48
8.191
dC(C6)
dH(NH)
Carbopeptoids are identified alphabetically from the N- to the C-terminus;
protons on each ring are numbered according to IUPAC recommendations
on carbohydrate nomenclature.
16 M. D. Smith, T. D. W. Claridge, G. E. Tranter, M. S. P. Sansom and
G. W. J. Fleet, Chem. Commun., 1998, 2041.
The support of the EPSRC and GlaxoWellcome in the form
of a CASE studentship (to D. D. L.) is gratefully acknowl-
edged.
Received in Liverpool, UK, 10th July 1998; 8/05364B
2040
Chem. Commun., 1998