3
1323; (m) Lu, Y.; Liu, J.; Diffee, G.; Liu, D.; Liu, B.
Scheme 1. A plausible reaction mechanism for reductive
coupling of nitrobenzenes into azoxybenzenes.
Tetrahedron Lett. 2006, 47, 4597; (n) Hwu, J. R.; Das, A. R.;
Yang, C. W.; Huang, J.-J.; Hsu, M.-H. Org. Lett. 2005, 7, 3211.
4. (a) De Groot, H.; Van den Heuvel, E.; Barendrecht, E.; Janssen, L.
J. J. Ger. Pat. 3020846, 1980; Chem. Abstr. 1981, 94, 54,934s; (b)
Ohba, T.; Ishida, H.; Yamaguchi, T.; Horiuchi, T.; Ohkubo. K. J.
Chem. Soc., Chem Commun 1994, 263.
In conclusion, an efficient copper catalyst was developed to
convert nitrobenzenes to corresponding azoxybenzenes in high
selectivity. This reaction condition was well tolerated not only
with a number of functional groups, but also with various
substitution positions. The reaction mechanism will be further
explored to expand its application.
5. (a) Busch, M.; Schulz, K. Chem. Ber. 1929, 62B, 1458; (b) Kim, J.
H.; Park, J. H.; Chung, Y. K.; Park, K. H. Adv. Synth. Catal. 2012,
354, 2412.
6. (a) Wang, J.; Liu, X.; Feng, X. Chem. Rev. 2011, 111, 6947; (b)
Liu, X.; Zheng, H.; Xia, Y.; Lin, L.; Feng, X. Acc. Chem. Res.
2017, 50, 2621.
7. (a) Xiao, X.; Lin, L.; Lian, X.; Liu, X.; Feng, X. Org. Chem.
Front. 2016, 3, 809; (b) Mei, H.; Xiao, X.; Zhao, X.; Fang, B.;
Liu, X.; Lin, L.; Feng, X. J. Org. Chem. 2015, 80, 2272; (c) Dong,
Z.; Feng, J.; Fu, X.; Liu, X.; Lin, L.; Feng, X. Chem. Eur. J. 2011,
17, 1118; (d) Chang, L.; Kuang, Y.; Qin, B.; Zhou,X.; Liu, X.;
Lin, L.; Feng, X. Org. Lett. 2010, 12, 2214.
Acknowledgments
This work was supported by the National Natural Science
Foundation (21472191, 81773559, 21672050), the International
Cooperation Special Grant (2016A050502036) from the Science
and Technology Development Project of Guangdong Province,
the International Cooperation Grant (201704030099) of
Guangzhou, and the Science and Technology Planning Project of
Guangdong Province (2013A022100019) and Chinese
8. No superior results were achieved with other solvents screened.
9. General procedure: to a Schlenk tube were added nitroarene (1
mmol), ligand 3 (0.5 mmol, 0.5 equiv.), CuI (0.1 mmol, 10 mol%),
and NaOH (4 mmol, 4.0 equiv.). The tube was evacuated and
backfilled with argon for three times. A mixture of DMSO and
H2O (1:2 ratio, 2 mL) was added via syringe. The mixture was
then stirred in a sealed tube under argon atmosphere. The reaction
mixture was stirred at 80 °C till complete consumption of starting
material (monitored by TLC). The mixture was diluted with ethyl
acetate (10 mL) and H2O (10 mL). The two layers were separated
and the aqueous layer was extracted with ethyl acetate (2 × 10
mL). The combined organic layers were washed with brine, dried
over anhydrous MgSO4, and concentrated in vacuo. The residue
was purified by column chromatography on silica gel using
petroleum ether/ethyl acetate as eluent to provide the desired
product.
Pharmaceutical
Innovation Foundation.
Association-Yiling
Biopharmaceutical
References and notes
10. Lin, M.; Wang, Z.; Fang, H.; Liu, L.; Yin, H.; Yan, C.-H.; Fu, X.
RSC Adv. 2016, 6, 10861.
1. (a) Pintre, I. C.; Gimeno, N.; Serrano, J. S.; Ros, M. B.; Alonso, I.;
Folcia, C. L.; Ortega, J.; Etxebarria, J. J. Mater. Chem. 2007, 16,
1674; (b) Folcia, C. L.; Alonso, I.; Ortega, J.; Etxebarria, J.; Pintre,
I.; Ros, M. B. Chem. Mater. 2006, 18, 4617; (c) Vix, A. B. E.;
Mueller-Buschbaum, P.; Stocker, W.; Stamm, M.; Rabe, J. P.
Langmuir 2000, 16, 10456.
2. (a) Rezaeifard, A.; Jafarpour, M.; Naseri, M. A.; Shariati, R. Dyes
Pigments 2008, 76, 840; (b) Huang, J. M.; Kuo, J. F.; Chen, C. Y.
J. Appl. Polym. Sci. 1995, 55, 1217.
Supplementary Material
Supplementary material that may be helpful in the review
process should be prepared and provided as a separate electronic
file. That file can then be transformed into PDF format and
submitted along with the manuscript and graphic files to the
appropriate editorial office.
3. For selected examples of reductive process, see: (a) Newbold, B.
T. J. Chem. Soc. 1961, 4260; (b) Suter, C. M.; Dains, F. B. J. Am.
Chem. Soc. 1928, 50, 2733; (c) Olah, G.; Pavlath, A.; Kuhn, I.
Acta Chim. Acad. Sci. Hung. 1955, 7, 71; (d) Shine, H. J.; Mallory,
H. E. J. Org. Chem. 1962, 27, 2390; (e) Weill, C. E.; Panson, G. S.
J. Org. Chem. 1956, 21, 803; (f) Dewar, M. J. S.; Goldberg, R. S.
Tetrahedron Lett. 1966, 2717; (g) Bigelow, H. E.; Palmer, A.
Organic Syntheses; Wiley: New York, 1943; Collect. Vol. 2, pp
57-59; (h) Zechmeiser, L.; Rom, P. Justus Liebigs Ann. Chem.
1929, 468, 117; (i) Hou, Z.; Fujiwara, Y.; Taniguchi, H. J. Org.
Chem. 1988, 53, 3118; (j) McKillop, A.; Raphael, R. A.; Taylor, E.
C. J. Org. Chem. 1970, 35, 1670; (k) Buckler, S. A.; Doll, L.; Lind,
F. K.; Epstein, M. J. Org. Chem. 1962, 27, 794; (l) Galbraith, H.
W.; Degering, E. F.; Hitch, E. F. J. Am. Chem. Soc. 1951, 73,
Click here to remove instruction text...