3 W. Hagar and E. Vichinsky, Br. J. Haematol., 2008, 141, 346–356.
0.14 (assuming errors on the determined pKa values of 0.1).
However, for some HPOs which are associated with experi-
mentally difficult log K1 determinations, the error can exceed 1.0
(Table S1 in ESI†). The plot of log K1 versus the corresponding
sum of pKa values (Fig. 5) was utilised to evaluate this exper-
imental error. The utilisation of the sum of pKa values rather
than the single carbonyl or hydroxyl pKa value was adopted
because both of the pKa values are associated with functional
groups which coordinate Fe3+.
The 10 HPO outliers in Fig. 4 can be categorised into 4 main
subclasses, namely 1-hydrogen-(2 or 6)-amido-, 2-hydroxy-
methyl-, 1-hydroxy(ethyl or propyl)- and 1-carboxyethyl-HPOs.
All these HPOs possess hydrogen bonding donors and acceptors
on the aromatic ring substituents and this may result in a distur-
bance of the first layer of solvation molecules surrounding each
iron (Fe3+) complex. This in turn will influence the magnitudes
of their stability constants; for instance, with CP511, which has
strong intramolecular hydrogen bonding,24 there is an appreci-
able decrease in log K1 values (Fig. S1 in ESI†) when increased
molar ratios of L : Fe3+ are employed in the titration. This effect
is probably associated with the partial formation of a μ-oxo
bridge species (Fe3+–O–Fe3+L−1) at relatively high Fe3+ molar
concentrations, thus disturbing the UV/Vis spectra. For this
reason, the 10 : 1 molar ratio of L : Fe3+ was adopted to minimise
the formation of μ-oxo bridges during the experimental determi-
nation of log K1 values in this study.
A knowledge of pKa values can be neglected using the de-
veloped prediction methodology for HPO log K1 values and this is
particularly useful to predict HPOs possessing at least three pKa
values. For the experimental log K1 determination of HPOs with
more than two pKa values, special attention is required to iden-
tify which two pKa values correspond to the iron-coordinating
oxygens. If the two pKa values are incorrectly assigned, there
will be an appreciable error in the associated experimental
log K1 value.
In summary, the methodology developed in this study is the
first quantum mechanical approach to predict the absolute log K1
value of iron-chelating agents in the absence of pKa values. The
plot of log K1 values versus the corresponding sum of pKa
values (of co-ordinating atoms) has proved to be extremely
useful in order to investigate the accuracy of experimentally
determined log K1 values. The stability constants for HPOs with
substituents possessing hydrogen bonding donors and acceptors
should be determined using a 10 : 1 molar ratio of L : Fe3+.
4 H. Keberle, Ann. N. Y. Acad. Sci., 1964, 119, 758–768.
5 T. Zhou, Y. Ma, X. Kong and R. C. Hider, Dalton Trans., 2012, 41,
6371–6389.
6 E. R. Huehns, J. B. Porter and R. C. Hider, Hemoglobin, 1988, 12,
593–600.
7 C. Borgna-Pignatti, M. D. Cappellini, P. De Stefano, G. C. Del Vecchio,
G. L. Forni, M. R. Gamberini, R. Ghilardi, A. Piga, M. A. Romeo,
H. Zhao and A. Cnaan, Blood, 2006, 107, 3733–3737.
8 A. Pepe, A. Meloni, M. Capra, P. Cianciulli, L. Prossomariti,
C. Malaventura, M. C. Putti, A. Lippi, M. A. Romeo, M. G. Bisconte,
A. Filosa, V. Caruso, A. Quarta, L. Pitrolo, M. Missere, M. Midiri,
G. Rossi, V. Positano, M. Lombardi and A. Maggio, Haematologica,
2010, 96, 41–47.
9 O. Kakhlon, H. Manning, W. Breuer, N. Melamed-Book, C. Lu,
G. Cortopassi, A. Munnich and Z. I. Cabantchik, Blood, 2008, 112,
5219–5227.
10 A. R. Cohen, R. Galanello, A. Piga, V. De Sanctis and F. Tricta, Blood,
2003, 102, 1583–1587.
13 J. Ho and M. Coote, Theor. Chem. Acc.: Theory, Computation, and
Modeling (Theoretica Chimica Acta), 2010, 125, 3–21.
14 Y. L. Chen, D. J. Barlow, X. L. Kong, Y. M. Ma and R. C. Hider, Dalton
Trans., 2012, 41, 6549–6557.
15 X. L. Kong, T. Zhou, H. Neubert, Z. D. Liu and R. C. Hider, J. Med.
Chem., 2006, 49, 3028–3031.
16 P. Gans, A. Sabatini and A. Vacca, Ann. Chim. (Rome, Italy), 1999, 89,
45–49.
17 L. Alderighi, P. Gans, A. Ienco, D. Peters, A. Sabatini and A. Vacca,
Coord. Chem. Rev., 1999, 184, 311–318.
18 J. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic
Structure Methods, Gaussian, Pittsburgh, PA, 2nd edn, 1996.
19 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida,
T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven,
J. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,
E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi,
J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar,
J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich,
A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski
and D. J. Fox, GAUSSIAN 09 (Revision A.02 SMP), Gaussian, Inc.,
Wallingford CT, 2009.
ruary, 2011), Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida
32601, USA.
21 X. Kong, PhD thesis, King’s College London, University of London,
2008.
22 Z. D. Liu, H. H. Khodr, D. Y. Liu, S. L. Lu and R. C. Hider, J. Med.
Chem., 1999, 42, 4814–4823.
23 Y. Ma, S. Roy, X. Kong, Y. Chen, D. Liu and R. C. Hider, J. Med.
Chem., 2012, 55, 2185–2195.
24 S. Piyamongkol, Y. M. Ma, X. L. Kong, Z. D. Liu, M. D. Aytemir,
D. van der Helm and R. C. Hider, Chem.–Eur. J., 2010, 16, 6374–6381.
25 B. L. Rai, L. S. Dekhordi, H. Khodr, Y. Jin, Z. Liu and R. C. Hider,
J. Med. Chem., 1998, 41, 3347–3359.
References
1 O. Weinreb, T. Amit, S. Mandel, L. Kupershmidt and M. B. Youdim,
Antioxid. Redox Signaling, 2010, 13, 919–949.
2 E. J. Neufeld, Blood, 2006, 107, 3436–3441.
26 R. C. Hider and A. D. Hall, Prog. Med. Chem., 1991, 28, 41–173.
This journal is © The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 10784–10791 | 10791