7596
J . Org. Chem. 1998, 63, 7596-7597
Sch em e 1
Tota l Syn th esis of (+)-Ca lycu lin A a n d
(-)-Ca lycu lin B
Amos B. Smith, III,* Gregory K. Friestad,
J ames J .-W. Duan, J oseph Barbosa, Kenneth G. Hull,
Makoto Iwashima, Yuping Qiu, P. Grant Spoors,
Emmanuel Bertounesque, and Brian A. Salvatore
Department of Chemistry, University of Pennsylvania,
Philadelphia, Pennsylvania 19104
Received September 8, 1998
In the late 1980s, Fusetani and co-workers reported the
isolation and structural elucidation of calyculins A and B,1
potent serine-threonine protein phosphatase (PP1 and PP2A)
inhibitors2 endowed with remarkable cell membrane perme-
ability.3 The striking array of stereochemical and functional
elements, in conjunction with the increasing use of (-)-1 to
explore intracellular phosphorylation,4 has engendered con-
siderable interest by the synthetic community, with notable
total syntheses of the unnatural and natural antipodes of
calyculin A [i.e., (+)-1 and (-)-1] by Evans5 and Masamune,6
respectively.7 Our interest in the calyculins emanated from
the novel [5.6]spiroketal moiety, a central feature in our
phyllanthostatin-breynolide synthetic ventures.8 Herein we
disclose an efficient, convergent total synthesis of (+)-1 and
the first total synthesis of (-)-calyculin B (2).9
From the outset, we envisioned an approach that would
provide both 1 and 2 from a common advanced intermediate,
avoid extensive manipulations of the light-sensitive10
C(1-9) cyanotetraene, and permit flexibility in fragment
coupling. Accordingly, disconnections at the C(2) and C(8)
olefins led to phosphonate A (Scheme 1), possessing a latent
C(3) carbonyl for penultimate Peterson olefination to access
both 1 and 2. Disconnection of BCDE at the C(25) olefin
revealed subtargets BC, envisioned to arise via coupling acyl
anion equivalent B with epoxide C, and DE, available from
oxazole D and lactam E. Efficient stereoselective routes to
(+)-C, (-)-D, and (-)-E,11 in conjunction with a highly
diastereoselective IBr-induced iodocarbonate cyclization12
and a dithiane-epoxide coupling tactic13 to construct a
C(16-25) masked aldol en route to spiroketal C,11a were
disclosed previously.
Phosphonate A presented the intriguing possibility of
olefin σ-bond construction13 via a Suzuki14 one-pot three-
component triene synthesis (Scheme 2). In the event,
Pd-catalyzed coupling of organozinc 3, (E)-bromovinyl
boronate 4,14 and vinyl iodide 615,16 furnished the desired
triene. Methylation at C(8) completed the preparation of
A.
(1) Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K.; Fujita, S.;
Furuya, T. J . Am. Chem. Soc. 1986, 108, 2780. Kato, Y.; Fusetani, N.;
Matsunaga, S.; Hashimoto, K.; Koseki, K. J . Org. Chem. 1988, 53, 3930.
(2) Ishihara, H.; Martin, B. L.; Brautigan, D. L.; Karaki, H.; Ozaki, H.;
Kato, Y.; Fusetani, N.; Watabe, S.; Hashimoto, K.; Uemura, D.; Hartshorne,
D. J . Biochem. Biophys. Res. Commun. 1989, 159, 871.
(3) Favre, B.; Turowski, P.; Hemmings, B. A. J . Biol. Chem. 1997, 272,
13856 and references therein.
Sch em e 2
(4) Sheppeck, J . E., II; Gauss, C.-M.; Chamberlin, A. R. Bioorg. Med.
Chem. 1997, 5, 1739 and references therein.
(5) Evans, D. A.; Gage, J . R.; Leighton, J . L. J . Am. Chem. Soc. 1992,
114, 9434.
(6) Tanimoto, N.; Gerritz, S. W.; Sawabe, A.; Noda, T.; Filla, S. A.;
Masamune, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 673.
(7) For a formal synthesis of (-)-1, see: Yokokawa, F.; Hamada, Y.;
Shioiri, T. J . Chem. Soc., Chem. Commun. 1996, 871. For other approaches
to calyculins, see: Pihko, P. M.; Koskinen, A. M. P. J . Org. Chem. 1998,
63, 92. Ogawa, A. K.; DeMattei, J . A.; Scarlato, G. R.; Tellew, J . E.; Chong,
L. S.; Armstrong, R. W. J . Org. Chem. 1996, 61, 6153. Barrett, A. G. M.;
Malecha, J . W. J . Chem Soc., Perkin Trans. 1 1994, 1901 and references
therein.
To set the stage for assembly of BCDE, we required
subtargets B and DE. For B, desilylation of the Roush
crotylboration product (+)-717 (Scheme 3), 1,3-acetonide
(8) Smith, A. B., III; Hale, K. J .; Vaccaro, H. A.; Rivero, R. A. J . Am.
Chem. Soc. 1991, 113, 2112. Smith, A. B., III; Empfield, J . R.; Rivero, R.
A.; Vaccaro, H. A.; Duan, J . J .-W.; Sulikowski, M. M. Ibid. 1992, 114, 9419
and references therein.
(9) At the start of our work, the absolute stereochemistry was unknown.
(10) Matsunaga, S.; Fujiki, H.; Sakata, D.; Fusetani, N. Tetrahedron
1991, 47, 2999.
(11) (a) Smith, A. B., III; Duan, J . J .-W.; Hull, K. G.; Salvatore, B. A.
Tetrahedron Lett. 1991, 32, 4855. (b) Smith, A. B., III; Salvatore, B. A.;
Hull, K. G.; Duan, J . J .-W. Ibid. 1991, 32, 4859. (c) Salvatore, B. A.; Smith,
A. B., III. Ibid. 1994, 35, 1329. (d) Smith, A. B., III; Iwashima, M. Ibid.
1994, 35, 6051. (e) Iwashima, M.; Kinsho, T.; Smith, A. B., III. Ibid. 1995,
36, 2199.
(12) Duan, J . J .-W.; Smith, A. B., III. J . Org. Chem. 1993, 58, 3703.
(13) For related examples, see: Smith, A. B., III; Condon, S. M.;
McCauley, J . A. Acc. Chem. Res. 1998, 31, 35.
(14) (a) Hyuga, S.; Chiba, Y.; Yamashina, N.; Hara, S.; Suzuki, A. Chem.
Lett. 1987, 1757. (b) Ogima, M.; Hyuga, S.; Hara, S.; Suzuki, A. Chem. Lett.
1989, 1959. (c) Hyuga, S.; Yamashina, N.; Hara, S.; Suzuki, A. Chem. Lett.
1988, 809.
(15) The structure assigned to each new pure compound is in accord with
its IR, 1H and 13C NMR, and high-resolution mass spectra.
(16) Phosphonate 6 was prepared from the corresponding alcohol (Rand,
C. L.; Van Horn, D. E.; Moore, M. W.; Negishi, E.-I. J . Org. Chem. 1981,
46, 4093) in two steps [MsCl, DMAP; P(OMe)3, NaI, neat; 70% yield].
10.1021/jo981813x CCC: $15.00 © 1998 American Chemical Society
Published on Web 10/16/1998