J. Am. Chem. Soc. 1998, 120, 12357-12358
12357
Mechanism of Transient Dark Activity of
13-Desmethylretinal/Rod Opsin Complex
Qiang Tan and Koji Nakanishi*
Department of Chemistry
Columbia UniVersity
New York, New York 10027
Rosalie K. Crouch
Figure 1. Traces A-H: Relative activities of incubation mixture
measured by transducin assay. A. 13dm 1 and opsin; B. All-trans-retinal
and opsin; C. All-trans-retinal and opsin pretreated with â-ionone; D.
2H13dm 2 and opsin; E. Ret6 3 and opsin; F. 13dm 1 and opsin pretreated
with â-ionone; G. â-ionone and opsin; H. Opsin. Trace I: A497 of 13dm
1 with opsin. Trace J: A497 of 13dm 1 and opsin pretreated with â-ionone.
Department of Ophthalmology
Medical UniVersity of South Carolina
Charleston, South Carolina 29425
ReceiVed August 4, 1998
We report the studies employing 11-cis-13-desmethylretinal
(13dm) 1, its dihydro analogue 2H13dm 2, and 11-cis six-
membered ring-locked analogue ret6 3, to clarify the mechanism
of dark activity of the 13-desmethylretinal/rod opsin complex.
Rhodopsin (Rh) is composed of a retinal chromophore linked
to Lys 296 of the apoprotein opsin via a protonated Schiff base
(PSB).1 Light-induced retinal 11-cis f trans isomerization
triggers protein conformational changes leading to metarhodopsin
II (Meta-II) which activates the G-protein transducin to initiate
the enzymatic cascade of visual transduction.2 Phosphorylation
of Meta-II by rhodopsin kinase and subsequent binding of arrestin
deactivate Meta-II.3
process of visual regulation. Following the 1980 report that 13dm
1 and opsin induced dark activation of phosphodiesterase,7 a
subsequent assay for rhodopsin kinase activity showed that the
dark activity decayed with time, i.e., it is transient.4c In the
following, the mechanism of this transient dark activity has been
studied with analogues 1-38a by performing UV/Vis/CD mea-
surements and transducin assays,8b in which the relative activity
of opsin/retinal complex is measured by counting the amount of
GTPγ35S bound to transducin.
Figure 1 shows the transducin assay and UV/Vis measurements.
Opsin treated with 13dm 1 exhibited transient dark activity (trace
A), consistent with previous kinase assay data.4c Decay of the
activity was accompanied with the regeneration of 13-desmethyl
rhodopsin (13dmRh) with a 497 nm λmax (trace I), implying that
an early active species is replaced by the inactive 13dmRh with
the PSB linkage (497 nm). The residual activity after 120 min
incubation could be due to the nonspecific binding of GTPγ35S.
Recently it has been observed that opsin can be activated by
retinal analogues including all-trans-retinal, all-trans-13dm 4, all-
trans-C15 5, and â-ionone 6 in the absence of light.4 Dark activity
The retinal binding cavity contains a binding site (site I in
Figure 3 below) for the cyclohexene ring of â-ionone 6,4d,9 which
activates opsin, but compared to 13dm 1, only weakly.4c-e Traces
J and F show that â-ionone inhibits the binding and opsin
activation of 13dm 1. Hence, for opsin activation, 13dm 1 needs
to enter the protein cavity with the cyclohexene ring occupying
the corresponding binding pocket. In contrast, traces B and C
show all-trans-retinal exhibited sustained activity which was
essentially unaffected by â-ionone, in agreement with the
published data.4d 2H13dm 210 (prepared as in Scheme 1) and
of opsin/retinal complex has been proposed to be responsible for
bleaching adaptation,4c-d,5 whereas constitutive activation of opsin
leads to certain night blindness and retinal degeneration diseases.5d,6
Therefore, clarification of the mechanism of dark activity of opsin/
retinal complex is essential for understanding the complicated
(5) (a) Cornwall, M. C.; Matthews, H. R.; Crouch, R. K.; Fain, G. L. J.
Gen. Physiol. 1995, 106, 543-557. (b) Corson, D. W.; Cornwall, M. C.;
MacNichol, E. F.; Tsang, S.; Derguini, F.; Crouch, R. K.; Nakanishi, K. Proc.
Natl. Acad. Sci. U.S.A. 1994, 91, 6958-6962. (c) Jin, J.; Crouch, R. K.; Corson,
D. W.; Katz, B. M.; MacNichol, E. F.; Cornwall, M. C. Neuron 1993, 11,
513-522. (d) Palczewski, K.; Saari, J. C. Curr. Opin. Neurobiol. 1997, 7,
500-504.
(6) (a) Rao, V. R.; Oprian, D. D. Annu. ReV. Biophys. Biomol. Struct. 1996,
25, 287-314. (b) Fahmy, K.; Zvyaga, T. A.; Sakmar, T. P.; Siebert, F.
Biochemistry 1996, 35, 15065-15073.
(7) Ebrey, T.; Tsuda, M.; Sassenrath, G.; West, J. L.; Waddel, W. H. FEBS
Lett. 1980, 116, 217-219.
(1) (a) Yoshizawa, T.; Wald, G. Nature 1963, 197, 1279-1286. (b) Wald,
G. Nature 1968, 219, 800-807. (c) Unger, V. M.; Hargrave, P. A.; Baldwin,
J. M.; Schertler, G. F. X. Nature 1997, 389, 203-206. (d) Schertler, G. F.
X.; Villa, C.; Henderson, R. Nature 1993, 362, 770-772. (e) Tan, Q.; Lou,
J.; Borhan, B.; Karnaukhova, E.; Berova, N.; Nakanishi, K. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2089-2093. (f) Zhang, H.; Lerro, K. A.; Yamamoto,
T.; Lien, T. H.; Sastry, L.; Gawinowicz, M. A.; Nakanishi, K. J. Am. Chem.
Soc. 1994, 116, 10165-10173.
(2) (a) Ko¨nig, B.; Arendt, A.; McDowell, J. H.; Kahlert, M.; Hargrave, P.
A.; Hofmann, K. P. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 6878-6882. (b)
Stryer, L. J. Biol. Chem. 1991, 266, 10711-10714. (c) Khorana, H. G. J.
Biol. Chem. 1992, 267, 1-4. (d) Nathans, J. Biochemistry 1992, 31, 4923-
4931.
(3) (a) Bownds, D.; Dawes, J.; Miller, J.; M., S. Nature New Biol. 1972,
237, 125-127. (b) Palczewski, K.; Rispoli, G.; Detwiler, P. B. Neuron 1992,
8, 117-126. (c) Pulvermuller, A.; Palczewski, K.; Hofmann, K. P. Biochem-
istry 1993, 32, 14082-14088.
(4) (a) Kefalov, V. J.; Cornwall, M. C.; Crouch, R. K. InVest. Ophthalmol.
Visual Res. 1998, 39, S1123. (b) Cornwall, M. C.; Corson, D. W.; Crouch, R.
K.; Fain, G. L. InVest. Ophthalmol. Visual Res. 1996, 37, S239. (c) Buczylko,
J.; Saari, J. C.; Crouch, R. K.; Palczewski, K. J. Biol. Chem. 1996, 271,
20621-20630. (d) Ja¨ger, S.; Palczewski, K.; Hofmann, K. P. Biochemistry
1996, 35, 2901-2908. (e) Palczewski, K.; Ja¨ger, S.; Buczylko, J.; Crouch, R.
K.; Bredberg, D. L.; Hofmann, K. P.; Asson-Batres, M. A.; Saari, J. C.
Biochemistry 1994, 33, 1-13750.
(8) (a) 13dm 1 was prepared according to: Broek, A. D.; Muradin-
Szweykowska, M.; Courtin, J. M. L.; Lugtenburg, J. J. R. Neth. Chem. Soc.
1983, 102, 46-51. (b) To 10 mM pH 7.4 Tris containing 4 µM opsin or
opsin pretreated with 20 equiv of â-ionone for 1 h was added 4 molar equiv
retinal analogues in DMF (<2% v/v). According to the published procedures
(Wessling-Resnick, M.; Johnson, G. L. J. Biol. Chem. 1987, 262, 12444-
12447), a portion of the above mixture was transferred into the transducin
assay solution in 10 mM pH 7.4 Tris, which then contained 1-10 µM
transducin, 200 nM opsin, and 10 µM GTPγ35S. After 5 min 70 µL of the
assay mixture was filtered through a nitrocellulose filter, which was dissolved
in 10 mL of scintillation fluid Filtron-X, and its radioactivity, corresponding
to the relative activity of opsin/retinal complex, was counted on a Beckman
scintillation counter. CD and UV/Vis spectra were taken in 10 mM pH 7.4
Tris and 23 mM dodecyl maltoside.
(9) Matsumoto, H.; Yoshizawa, T. Nature 1975, 258, 523-526.
10.1021/ja9827752 CCC: $15.00 © 1998 American Chemical Society
Published on Web 11/13/1998