aqueous hydrogen peroxide.5 Also in the area of polyoxo-
metalate oxidation catalysis various techniques for separation/
recovery of the polyoxometalate from the other reaction
components have been considered. These methods include
supported catalysts,6 aqueous biphasic media,7 solvent an-
chored catalysts,8 and others.9 In this paper we report on our
adaptation of the concept of biphasic fluorous phase catalysis
into the realm of oxidation catalysis by polyoxometalates.
We have found that thermomorphic fluorous polyoxometa-
lates may be prepared and used in fluorous biphasic catalysis
despite the polyanionic nature of the polyoxometalates by
use of perfluorinated quaternary ammonium cations, [CF3-
(CF2)7(CH2)3]3CH3N+ or (RFN+), as countercations. Conse-
quently, effective catalytic oxidation reactions of alkenes,
alkenols, and alcohols can be carried out using “sandwich”-
type polyoxometalates, (RFN+)12[WZnM2(H2O)2(ZnW9O34)2],
Figure 1, with aqueous hydrogen peroxide as oxidant with
or without fluorous solvents.
Figure 1. Representation of the [WZnM2(H2O)2(ZnW9O34)2]12-
polyoxometalate with two (out of twelve) (RFN+) countercations.
polyoxometalates, (RFN+)12[WZnM2(H2O)2(ZnW9O34)2], were
The fluorous quaternary ammonium salt {[CF3(CF2)7-
(CH2)3]3CH3N+}CH3OSO3- was prepared by quaternization
of the known fluorous tertiary aliphatic amine,10 by dimethyl
sulfate (see Supporting Information for details). The fluorous
then prepared by mixing 12 equiv of {[CF3(CF2)7(CH2)3]3-
-
CH3N+}CH3OSO3 with 1 equiv of Na12[WZnM2(H2O)2-
(ZnW9O34)2] polyoxometalate.11 The fluorine content by
weight of (RFN+)12[WZnM2(H2O)2(ZnW9O34)2] is 51.5%.
Thus, despite the polyanionic character of the polyoxo-
metalate, (RFN+)12[WZnM2(H2O)2(ZnW9O34)2] is freely soluble
in perfluorohydrocarbons at room temperature. In other
common solvents such as ethyl acetate and toluene (RFN+)12-
[WZnM2(H2O)2(ZnW9O34)2] is insoluble at room tempera-
ture, but dissolves upon heating to 60-80 °C. This property
leads to two different reaction protocols for the fluorous
biphasic catalysis, Figure 2: (a) with a perfluorohydrocarbon
(perfluorodecalin) solvent and (b) without a fluorous solvent,
e.g. EtOAc. Results with the two catalytic reaction protocols
for the oxidation of alcohols, alkenols, and alkenes are
presented in Tables 1-3, respectively.
(2) (a) Vincent, J.-M.; Rabion, A.; Yachandra, V. K.; Fish, R. H. Angew.
Chem., Int. Ed. Engl. 1997, 36, 2346-2349. (b) Vincent, J.-M.; Rabion,
A.; Yachandra, V. K.; Fish, R. H. Can. J. Chem. 2001, 79, 888-895. (c)
Ragagnin, G.; Betzemeier, B.; Quici, S.; Knochel, P. Tetrahedron 2002,
58, 3985-3991. (d) Klement, I.; Knochel, P. Synlett 1995, 1113-1114.
(e) Klement, I.; Lutjens, H.; Knochel, P. Angew. Chem., Int. Ed. Engl. 1997,
36, 1454-1456. (f) Betzemeier, B.; Lhermitte, F.; Knochel, P. Tetrahedron
Lett. 1998, 39, 6667-6670. (g) Betzemeier, B.; Knochel, P. Synlett 1999,
489-491. (h) Betzemeier, B.; Cavazzini, M.; Quici, S.; Knochel, P.
Tetrahedron Lett. 2000, 41, 4343-4346. (i) Pozzi, G.; Cavzzini, M.; Quici,
S.; Maillard, D.; Sinou, D. J. Mol. Catal. A Chem. 2002, 182-183, 455-
461. (j) Cavazzini, M.; Manfredi, A.; Montanari, F.; Quici, S.; Pozzi, G.
Eur. J. Org. Chem. 2001, 4639-4649. (k) Pozzi, G.; Banfi, S.; Manfredi,
A.; Montanari, F.; Quici, S. Tetrahedron 1996, 52, 11879-11888. (l) Pozzi,
G.; Montanari, F.; Quici, S. Chem. Commun. 1997, 69-70. (m) Pozzi, G.;
Colombani, I.; Miglioli, M.; Montanari, F.; Quici, S. Tetrahedron 1997,
53, 6145-6162. (n) Pozzi, G.; Cavazzini, M.; Quici, S.; Fontana, S.
Tetrahedron Lett. 1997, 38, 7605-7608. (o) Quici, S.; Cavazzini, M.;
Ceragioli, S.; Montanari, F.; Pozzi, G. Tetrahedron Lett. 1999, 40, 3647-
3650. (p) Cavazzini, M.; Manfredi, A.; Montanari, F.; Quici, S.; Pozzi, G.
Chem. Commun. 2000, 2171-2172. (q) Collonna, S.; Gaggero, N.;
Montanari, F.; Pozzi, G.; Quici, S. Eur. J. Org. Chem. 2001, 181-186. (r)
ten Brink, G.-J.; Vis, J. M.; Arends, I. W. C. E.; Sheldon, R. A. Tetrahedron
2002, 58, 3977-3983.
(3) (a) Wende, M.; Meier, R.; Gladysz J. A. J. Am. Chem. Soc. 2001,
123, 11490-11491. (b) Wende, M.; Gladysz, J. A. J. Am. Chem. Soc. 2003,
125, 5861-5872.
(4) (a) Kozhevnikov, I. V. Catalysis by Polyoxometalates; Wiley:
Chichester, England, 2002. (b) Hill, C. L.; Prosser-McCartha, C. M. Coord.
Chem. ReV, 1995, 143, 407-455. (c) Mizuno, N.; Misono, M. Chem. ReV.
1998, 98, 199-218. (d) Neumann, R. Prog. Inorg. Chem. 1998, 47, 317-
370.
(5) (a) Neumann, R.; Gara, M. J. Am. Chem. Soc. 1994, 116, 5509-
5510. (b) Neumann, R.; Gara, M. J. Am. Chem. Soc. 1995, 117, 5066-
5074. (c) Neumann, R.; Juwiler, D. Tetrahedron 1996, 47, 8781-8788.
(d) Adam, W.; Alsters, P. L.; Neumann, R.; Saha-Mo¨ller, C. R.; Sloboda-
Rozner, D.; Zhang, R. Synlett 2002, 2011-2014. (e) Adam, W.; Alsters,
P. L.; Neumann, R.; Saha-Mo¨ller, C. R.; Sloboda-Rozner, D.; Zhang, R. J.
Org. Chem. 2003, 68, 1721-1728.
Table 1. Oxidation of Aliphatic Alcohols with 30% Aqueous
H2O2 Catalyzed by (RFN+)12[WZn3(H2O)2(ZnW9O34)2]a
conversion, mol %
substrate
fluorous solvent
nonfluorous solvent
2-butanol
2-pentanol
2-hexanol
2-heptanol
2-octanol
3
32
44
46
67
43
50b
8
36
55
48
28
82
19c
cyclohexanol
1-octanol
a Reaction conditions: 1 mmol of alcohol, 2 mmol of 30% aq.H2O2, 1
mL of perfluorodecalin or EtOAc, 5 µmol of (RFN+)12[WZn3(H2O)2-
(ZnW9O34)2], 80 °C, 8 h. Analysis by GC; ketones were the only observed
product. b 4% octanal, 76% octanoic acid, 20% octyloctanoate. c 15%
octanal, 36% octanoic acid, 39% octyloctanoate.
(6) (a) Neumann, R.; Levin, M. J. Org. Chem. 1991, 56, 5707-5710.
(b) Yamaguchi, K.; Mizuno, N. New J. Chem. 2002, 26, 972-974. (c) Okun,
N. M.; Anderson, T. M.; Hill, C. L. J. Am. Chem. Soc. 2003, 125, 3194-
3195. (d) Khenkin, A. M.; Neumann, R.; Sorokin, A. B.; Tuel, A. Catal.
Lett. 1999, 63, 189-192. (e) Neumann, R.; Miller, H. J. Chem. Soc., Chem.
Commun. 1995, 2277-2778.
(7) Sloboda-Rozner, D.; Alsters, P. L.; Neumann, R. J. Am. Chem. Soc.
2003, 125, 5280-5281.
(8) (a) Neumann, R.; Cohen, M. Angew. Chem., Int. Ed. Engl. 1997, 36,
1738-1740. (b) Cohen, M.; Neumann, R. J. Mol. Catal. A 1999, 146, 293-
300.
One may observe that secondary aliphatic alcohols were
rather effectively oxidized to the expected ketones without
(10) Rocaboy, C.; Bauer, W.; Gladysz, J. A. Eur. J. Chem. 2000, 2621-
2628.
(11) Zonnevijlle, F.; Tourne´, C. M.; Tourne´, G. F. J. Chem. Soc., Dalton
Trans. 1991, 143-155.
(9) Haimov, A.; Neumann, R. Chem. Commun. 2002, 876-877.
3548
Org. Lett., Vol. 5, No. 20, 2003