Journal of the American Chemical Society
Communication
C.; Watkins, C.; Davis, J.; Stubberfield, C. Bioorg. Med. Chem. Lett. 2009,
19, 1767.
possible entry into druglike compounds. In this vein, selective
functionalization of the various aryl bromide positions could
heighten utility.24 To demonstrate the viability of this goal, we
subjected 19-(Me) to metal−halogen exchange conditions at low
temperature.25 In this experiment, we observed efficient,
regioselective lithiation26 followed by trapping with I2 to give
compound 34. Notably, 34 was isolated without loss of er (eq 5)
(5) (a) Deng, X.; Dzamko, N.; Prescott, A.; Davies, P.; Liu, Q.; Yang,
Q.; Lee, J.-D.; Patricelli, M. P.; Nomanbhoy, T. K.; Alessi, D. R.; Gray, N.
S. Nat. Chem. Biol. 2011, 7, 203. (b) Choi, H. G.; Zhang, J.; Deng, X.;
Hatcher, J. M.; Patricelli, M. P.; Zhao, Z.; Alessi, D.; Gray, N. S. ACS
Med. Chem. Lett. 2012, 3, 658.
(6) (a) Thayumanavan, S.; Beak, P.; Curran, D. P. Tetrahedron Lett.
1996, 37, 2899. (b) Clayden, J.; Johnson, P.; Pink, J. H. J. Chem Soc.,
Perkin Trans. 1 2001, 371. (c) Clayden, J. Chem. Commun. 2004, 127.
(d) Clayden, J.; Lai, L W.; Helliwell, M. Tetrahedron 2004, 60, 4399.
(7) Koide, H.; Hata, T.; Yoshihara, K.; Kamikawa, K.; Uemura, M.
Tetrahedron 2004, 60, 4527.
(8) Suda, T.; Noguchi, K.; Hirano, M.; Tanaka, K. Chem.Eur. J. 2008,
14, 6593.
(9) (a) Rios, R.; Jimeno, C.; Carroll, P. J.; Walsh, P. J. J. Am. Chem. Soc.
2002, 124, 10272. (b) Dai, W.-M.; Zhang, Y.; Zhang, Y. Tetrahedron:
Asymmetry 2004, 15, 525. (c) Chan, V.; Kim, J. G.; Jimeno, C.; Caroll, P.
J.; Walsh, P. J. Org. Lett. 2004, 6, 2051.
(10) Gustafson, J. L.; Lim, D.; Miller, S. J. Science 2010, 328, 1251.
(11) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45,
1520.
(12) Garand, E.; Kamrath, M. Z.; Jordan, P. A.; Wolk, A. B.; McCoy, A.
B.; Miller, S. J.; Johnson, M. A. Science 2012, 335, 694.
(13) (a) Mitchell, R. H.; Lai, Y.-H.; Williams, R. V. J. Org. Chem. 1979,
44, 4733. (b) Ahmad, S.; Braddock, D. C.; Hermitage, G. Tetrahedron
Lett. 2007, 48, 915. (c) Denmark, S. E.; Burk, M. T. Proc. Natl. Acad. Sci.
U.S.A. 2010, 107, 20655.
(14) (a) Gilli, P.; Pretto, L.; Bertolasi, V.; Gilli, G. Acc. Chem. Res. 2009,
42, 33. (b) Etxebarria, J.; Degenbeck, H.; Felten, A.-S.; Serres, S.; Nieto,
N.; Vidal-Ferran, A. J. Org. Chem. 2009, 74, 8794.
as the illustrated regioisomer.20 Trapping with alternative
electrophiles or selective manipulation of scaffolds like 34
could prove to be a fruitful path for preparing other
atropisomerically enriched benzamides.
In summary, we have discovered an enantioselective
bromination process that leads to enantioenriched benzamides.
The reaction mechanism is complex but appears to follow a
pathway that involves a clear mechanistic dichotomy between
peptide-catalyzed and uncatalyzed variants. Given the increasing
attention to atropisomeric compounds in medicinal chemistry,3
we are hopeful that this catalytic process will increase access to
this family of structures, which along with mechanistic pursuits,
will be the continuing focus of this project.
(15) (a) Copeland, G. T.; Jarvo, E. R.; Miller, S. J. J. Org. Chem. 1998,
63, 6784. (b) Jarvo, E. R.; Copeland, G. T.; Papaioannou, N.;
Bonitatebus, P. J., Jr.; Miller, S. J. J. Am. Chem. Soc. 1999, 121, 11638.
(c) Cowen, B. J.; Saunders, L. B.; Miller, S. J. J. Am. Chem. Soc. 2009, 131,
6105. (d) Fowler, B. S.; Mikochik, P. J.; Miller, S. J. J. Am. Chem. Soc.
2010, 132, 2870.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures for all experiments, characterization
data, and crystallographic data (CIF). This material is available
■
S
(16) Haque, T. S.; Little, J. C.; Gellman, S. H. J. Am. Chem. Soc. 1996,
118, 6975.
AUTHOR INFORMATION
Corresponding Author
Notes
■
(17) A variety of peptide-based scaffolds were evaluated. It is notable
that 6 proved to be among the best at an early stage in this project. In
reactions employing peptides lacking the Dmaa residue, no
enantioselectivity was observed. The lead catalyst described in ref 10
delivered 5 in good yield with a 36:64 er under similar conditions, with a
preference for the enantiomer opposite to that obtained using 6.
(18) The results were consistent when reactions were performed on
scales ranging from 0.2 through 1.0 mmol of substrate. See the
Supporting Information for details.
(19) The reactions were efficiently quenched by the addition of butyl
vinyl ether to the reaction mixture at −40 °C.
(20) See the Supporting Information for details.
(21) Bott, G.; Field, L. D.; Sternhall, S. J. Am. Chem. Soc. 1980, 102,
5618.
(22) (a) Williams, D. H.; Fleming, I. Spectroscopic Methods in Organic
Chemistry, 3rd ed.; McGraw-Hill: Maidenhead, U.K., 1980. (b) Gomes,
J. A. N. F.; Mallion, R. B. Chem. Rev. 2001, 101, 1349.
(23) The absolute sense of the chirality for the other compounds in
Table 1 is not known and has been drawn as shown by analogy to 12.
(24) Gustafson, J. L.; Lim, D.; Barrett, K. T.; Miller, S. J. Angew. Chem.,
Int. Ed. 2011, 50, 5125.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Institute of General Medical
Sciences of the NIH (GM-068649) for support and to Timothy
Schmeier for X-ray crystallography.
REFERENCES
■
(1) (a) Cuykeng, M. A.; Mannschreck, A. Chem. Ber. 1987, 120, 803.
(b) Ahmed, A.; Bragg, R. A.; Clayden, J.; Lai, L. W.; McCarthy, C.; Pink,
J. H.; Westlund, N.; Yasin, S. A. Tetrahedron 1998, 54, 13277.
(2) (a) Ikeura, Y.; Ishichi, Y.; Tanaka, T.; Fujishima, A.; Murabayashi,
M.; Kawada, M.; Ishimaru, T.; Komo, I.; Doi, T.; Natsugari, H. J. Med.
Chem. 1998, 41, 4232. (b) Albert, J. S.; Ohnmacht, C.; Berstein, P. R.;
Rumsey, W. L.; Aharony, D.; Alelyunas, Y.; Russell, D. J.; Potts, W.;
Sherwood, S. A.; Shen, L.; Dedinas, R. F.; Palmer, W. E.; Russell, K. J.
Med. Chem. 2004, 47, 519. (c) Takahashi, H.; Wakamatsu, S.; Tabata,
H.; Oshitari, T.; Harada, A.; Inoue, K.; Natsugari, H. Org. Lett. 2011, 13,
760.
(3) (a) Clayden, J.; Moran, W. A.; Edwards, P. J.; LaPlante, S. R. Angew.
Chem., Int. Ed. 2009, 48, 6398. (b) LaPlante, S. R.; Fader, L. D.;
Fandrick, H. R.; Fandrick, D. R.; Hucke, O.; Kemper, R.; Miller, S. P. F.;
Edwards, P. J. J. Med. Chem. 2011, 54, 7005. (c) LaPlante, S. R.; Edwards,
P. J.; Fader, L. D.; Jakalian, A.; Hucke, O. ChemMedChem 2011, 6, 505.
(4) Porter, J.; Payne, A.; Whitcombe, I.; de Candole, B.; Ford, D.;
Garlish, R.; Hold, A.; Hutchinson, B.; Trevitt, G.; Turner, J.; Edwards,
(25) (a) Beak, P.; Allen, D. J. J. Am. Chem. Soc. 1992, 114, 3420.
́
(b) Najera, C.; Sansano, J. M.; Yus, M. Tetrahedron 2003, 59, 9255.
(26) Gilman, H.; Langham, W.; Moore, F. W. J. Am. Chem. Soc. 1940,
62, 2327.
2966
dx.doi.org/10.1021/ja400082x | J. Am. Chem. Soc. 2013, 135, 2963−2966