Allylic Alkylation in Ionic Liquids
4900 4906
(E)/(Z')-2-(4-hydroxy-3-methyl-but-2-enyl)-malonic acid dimethyl ester 8:
1H NMR (200 MHz, CDCl3, 258C, TMS): d 1.67 (br s, 3H; CH3), 1.79 (br
s, 3 H; CH3'), 2.65 (br m, 4H; CH2CCH3, CH2CCH3'), 3.42 (m, 2H; CH',
CH), 3.74 (s, 12H; OCH3, OCH3'), 3.96 (br s, 2H; CH2), 4.10 (br s, 2H;
2002, 4, 107 111; g) S. N. Baker, G. A. Baker, F. V. Bright, Green
Chem. 2002, 4, 165 169; h) N. L. Lancaster, P. A. Salter, T. Welton,
G. B. Young, J. Org. Chem. 2002, 67, 8855 8861; i) C. Hardacre, J. D.
Holbrey, S. E. J. McMath, D. T. Bowron, A. K. Soper, J. Chem. Phys.
2003, 118, 273 278.
CH2'), 5.19 (br t, J 7.7 Hz, 1H; C CH'), 5.35 ppm (br t, J 7.2 Hz, 1H;
C CH); 13C NMR (100 MHz, CDCl3): d 13.9, 21.8, 27.4, 27.4, 51.9, 52.0,
[5] a) K. Sato, S. Arai, T. Yamagishi, Tetrahedron Lett. 1999, 40, 5219
5222; b) J.-L. Thomas, J. Howarth, K. Hanlon, D. McGuirk, Tetrahe-
dron Lett. 2000, 41, 413 416; c) Y. Yuan, G. Gao, Z. L. Jiang, J. S.
You, Z. Y. Zhou, D. Q. Yuan, R. G. Xie, Tetrahedron 2002, 58, 8993
8999, and references therein.
52.8, 52.9, 61.5, 68.3, 120.4, 122.9, 138.7, 138.8, 169.8, 169.9 ppm; MS (I.C./
NH3): m/z (%): 234 [M NH4] (80); elemental analysis calcd (%) for
C10H16O5: C 55.55, H 7.47; found: C 55.55, H 7.54. The E/Z ratio for 8 was 3/
2
for the reaction in [bmim][BF4] and in THF based on 1H NMR
integration.
[6] L. C. Branco, J. G. Crespo, C. A. M. Afonso, Chem. Eur. J. 2002, 8,
3865 3871.
Typical Pd0-catalyzed isomerization reaction in [bmim][BF4] as exempli-
fied for 9: [Pd(dba)2] (28.7 mg, 5 mol%) and PPh3 (26.2 mg, 10 mol%)
were stirred in [bmim][BF4] (2 mL) at 808C for 20 min and then allowed to
cool to room temperature. 9 (114.2 mg, 1.0 mmol) was added and the
mixture stirred vigorously under an atmosphere of dry argon. 1H NMR
monitoring showed no formation of 10 after 20 h. The reaction was then
quenched with distilled water and the product extracted with Et2O. The
organic layer was washed with water and brine and dried over MgSO4 to
give 9 quantitatively. The same reaction in THF followed a reported
[7] For recent reviews, see: a) T. Welton, Chem. Rev. 1999, 99, 2071
2084; b) P. Wasserscheid, W. Keim, Angew. Chem. 2000, 112, 3926
3945; Angew. Chem. Int. Ed. 2000, 39, 3772 3789; c) M. J. Earle,
K. R. Seddon, Pure Appl. Chem. 2000, 72, 1391 1398; d) R. Sheldon,
Chem. Commun. 2001, 2399 2407; e) C. M. Gordon, Appl. Catal. A:
General 2001, 222, 101 117; f) H. Olivier-Bourbigou, L. Magna, J.
Mol. Catal. A: Chemical 2002, 182 183, 419 437; g) D. Zhao, M. Wu,
Y. Kou, E. Min, Catal. Today 2002, 74, 157 189; h) C. C. Tzschucke,
C. Markert, W. Bannwarth, S. Roller, A. Hebel, R. Haag, Angew.
Chem. 2002, 114, 4136 4173; Angew. Chem. Int. Ed. 2002, 41, 3964
4000.
[8] a) T. Fischer, A. Sethi, T. Welton, J. Woolf, Tetrahedron Lett. 1999, 40,
793 796; b) C. W. Lee, Tetrahedron Lett. 1999, 40, 2461 2464; c) A.
Aggarwal, N. L. Lancaster, A. R. Sethi, T. Welton, Green Chem. 2002,
4, 517 520; d) S. V. Dzyuba, R. A. Bartsch, Tetrahedron Lett. 2002,
43, 4657 4659; e) O. Acevedo, J. D. Evanseck, Abstr. Pap. Amer.
Chem. Soc. 2002, 224, 028-IEC.
[9] a) W. Chen, L. Xu, C. Chatterton, J. Xiao, Chem. Commun. 1999,
1247 1248; b) L. Xu, W. Chen, J. Xiao, Organometallics 2000, 19,
1123 1127; c) L. Xu, W. Chen, J. Ross, J. Xiao, Org. Lett. 2001, 3,
295 297; d) J. Ross, W. Chen, L. Xu, J. Xiao, Organometallics 2001,
20, 138 142; e) J. Ross, J. Xiao, Green. Chem. 2002, 4, 129 133.
[10] J. Tsuji, Palladium Reagents and Catalysts-Innovations in Organic
Synthesis, Wiley, Chichester, 1995.
[11] a) C. Amatore, S. Gamez, A. Jutand, G. Meyer, M. Moreno-Manas, L.
Morral, R. Pleixats, Chem. Eur. J. 2000, 6, 3372 3376, and references
therein; b) C. Amatore, S. Gamez, A. Jutand, Chem. Eur. J. 2001, 7,
1273 1280.
procedure,[29] with the ratio of
spectroscopy.
9
and 10 determined by 1H NMR
(E)-1-Acetoxy-but-2-ene (9):[36] 1H NMR (200 MHz, CDCl3, 258C, TMS):
d 1.73 (dd, J 6.1, 1.1 Hz, 3H; CH3), 2.05 (s, 3H; CH3CO2), 4.50 (d, J
6.6 Hz, 2H; CH2), 5.59 (td, J 15.4, 6.6, 1.1 Hz, 1H; CHCH2), 5.80 ppm (br
dq, J 15.4, 6.1 Hz, 1H; CH3CH).
3-Acetoxy-but-1-ene (10):[36] 1H NMR (200 MHz, CDCl3, 258C, TMS): d
1.31 (d, J 6.6 Hz, 3H; CH3), 2.06 (s, 3H; CH3CO2), 5.15 (dd, J 10.4,
1.1 Hz, 1H; CH CH2), 5.25 (dd, J 17.3, 1.1 Hz, 1H; CH CH2), 5.35 (br
quintet, J 6.6 Hz, 1H; CH3CH), 5.85 ppm (ddd, CH CH2).
Acknowledgement
We thank the EPSRC for a studentship (J.R.) and the industrial partners of
the Leverhulme Centre for Innovative Catalysis for support. We are also
grateful to Professor Don Bethell and Dr. Richard Bonar-Law for helpful
discussions. Johnson Matthey is gratefully acknowledged for the loan of
palladium.
[12] a) C. de Bellefon, E. Pollet, P. Grenouillet, J. Mol. Catal. A: Chemical
¬
1999, 145, 121 126; b) S. Toma, B. Gotov, I. Kmentova, E.
¬
¬
¬
Solcaniova, Green. Chem. 2000, 2, 149 151; c) I. Kmentova, B .
œ
¬
¬
Gotov, E. Solcaniova, S. Toma, Green. Chem. 2002, 4, 103 106.
[1] a) G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford
University Press, New York, 1997; b) S. Schreiner, Hydrogen Bonding,
Oxford University Press, New York, 1997. For some recent publica-
tions concerning hydrogen bonding and catalysis, see: c) S. P. de Viss-
er, F. Ogliaro, P. K. Sharma, S. Shaik, Angew. Chem. 2002, 114, 2027
2031; Angew. Chem. Int. Ed. 2002, 41, 1947 1951; d) Y. Huang, V. H.
Rawal, J. Am. Chem. Soc. 2002, 124, 9662 9663; e) R. D. Bach, J.
Phys. Chem. B 2002, 106, 4325 4335; f) C. E. Cannizzaro, K. N.
Houk, J. Am. Chem. Soc. 2002, 124, 7163 7169.
¬
[13] C. Amatore, E. Carre, A. Jutand, M. A. M'Barki, Organometallics
1995, 14, 1818 1826.
[14] a) W. N. Olmstead, Z. Margolin, F. G. Bordwell, J. Org. Chem. 1980,
45, 3295 3299; b) R. W. Alder, P. R. Allen, S. J. Williams, J. Chem.
Soc. Chem. Commun. 1995, 1267 1268; c) Y.-J. Kim, A. Streitwieser,
J. Am. Chem. Soc. 2002, 124, 5757 5761.
[15] The pKa of closely related diethyl malonate in DMSO is 16.4: F. G.
Bordwell, Acc. Chem. Res. 1988, 21, 456 463.
[16] a) J. Tsuji, I. Minami, Acc. Chem. Res. 1987, 20, 140 145; b) J. Tsuji,
Tetrahedron 1986, 42, 4361 4401.
[2] C. Reichardt, Solvents and Solvents Effects in Organic Chemistry, 2
ed., VCH, Weinheim, 1990.
[17] The pKa of DBU is 12.9 in H2O and 23.9 in CH3CN: W. Galezowski, A.
Jarczewski, M. Stanczyk, B. Brzezinski, F. Bartl, G. Zundel, J. Chem.
Soc. Faraday Trans. 1997, 93, 2515–2518, and references therein. The
pKa of HOAc is 4.8 in H2O and 12.3 in DMSO.[15]
[18] G. Giambastiani, G. Poli, J. Org. Chem. 1998, 63, 9608 9609.
[19] C. Amatore, A. Jutand, G. Meyer, L. Mottier, Chem. Eur. J. 1999, 5,
466 473.
[3] a) A. A. Fannin, L. A. King, J. A. Levisky, J. S. Wilkes, J. Phys. Chem.
1984, 88, 2609 2614; b) S. Tait, R. A. Osteryoung, Inorg. Chem. 1984,
23, 4352 4360; c) A. K. Abdul-Sada, A. M. Greenway, P. B. Hich-
cock, T. J. Mohammed, K. R. Seddon, J. A. Zora, J. Chem. Soc. Chem.
Commun. 1986, 1753 1754; d) K. M. Dieter, C. J. Dymek, Jr., N. E.
Heimer, J. W. Rovang, J. S. Wilkes, J. Am. Chem. Soc. 1988, 110,
2722 2726; e) A. G. Avent, P. A. Chaloner, M. P. Day, K. R. Seddon,
T. Welton, J. Chem. Soc. Dalton Trans. 1994, 3405 3413, and
references therein.
[20] J. L. Anderson, J. Ding, T. Welton, D. W. Armstrong, J. Am. Chem.
Soc. 2002, 124, 14247 14254, and references therein.
[21] a) J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc. Chem. Commun. 1992,
[4] For recent examples, see: a) L. Cammarata, S. G. Kazarian, P. A.
Salter, T. Welton, Phys. Chem. Chem. Phys. 2001, 3, 5192 5200;
b) L. M. J. Muldoon, C. M. Gordon, I. R. Dunkin, J. Chem. Soc.
Perkin Trans. 2, 2001, 433 435; c) A. Elaiwi, P. B. Hitchcock, J.-F.
Huang, P.-Y. Chen, I.-W. Sun, S. P. Wang, Inorg. Chim. Acta 2001, 320,
√
965 967; b) P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyana-
sundaram, M. Gr‰tzel, Inorg. Chem. 1996, 35, 1168 1178. Methyl
carbonate forms a stable salt with protonated DBU, probably due to
hydrogen bonding: c) P. Munshi, A. D. Main, J. C. Linehan, C.-C. Tai,
P. G. Jessop, J. Am. Chem. Soc. 2002, 124, 7963 7971.
7
11; d) A. D. Headley, N. M. Jackson, J. Phys. Org. Chem. 2002, 15,
[22] The chemical shift of the imidazolium H2 proton moved upfield by
only 0.07 ppm when the concentration of [bmim][BF4] changed from
0.014 to 0.68m in CDCl3 in the absence of [nBu4N][OAc], showing that
52 55; e) A. E. Bradley, C. Hardacre, J. D. Holbrey, S. Johnston,
S. E. J. McMath, M. Nieuwenhuyzen, Chem. Mater. 2002, 14, 629
635; f) C. G. Hanke, N. A. Atamas, R. M. Lynden-Bell, Green Chem.
Chem. Eur. J. 2003, 9, 4900 4906
¹ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
4905