139
value of 97% were achieved within 6 h in the 0.2 F/T. Scale up is
Commun. (1996) 233–234;
(l) T. Ohkuma, H. Ooka, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc.
117 (1995) 2675–2676;
(m) K. Everaere, A. Mortreux, J.F. Carpentier, Adv. Synth. Catal. 345 (2003)
67–77;
(n) Y.C. Chen, D. Xue, J.G. Deng, X. Cui, J. Zhu, Y.Z. Jiang, Tetrahedron Lett. 45
(2004) 1555–1558;
(o) X.G. Li, X.F. Wu, W.P. Chen, F.E. Hancock, F. King, J.L. Xiao, Org. Lett. 6 (2004)
(p) J. Zhang, P.G. Blazecka, M.M. Bruendl, Y. Huang, J. Org. Chem. 74 (2009)
1411–1414;
(q) C.V. Ursini, F. Mazzeo, J.A.R. Rodrigues, Tetrahedron: Asymmetry 17 (2006)
3335–3340;
(r) R.V. Wisman, J.G. de Vries, B.J. Deelman, H.J. Heeres, Org. Process Res. Dev.
10 (2006) 423–429;
reduction of 2 g of this ketone afforded 93% isolated yield and 96%
ee in 11 h under the conditions shown in Table 2. Matsumura et al.
CHCl3 at room temperature, furnishing 93% yield and 95% ee in 6 h
[22]. Furthermore, this result compares favorably to that obtained
with the enzyme C. laurentii, which afforded 34% isolated yield and
99% ee at 35 ◦C in 36 h [23].
excellent ee and de values under the current conditions (Table 3).
There are few example of ATH of diketones in the literature [5,24l].
Hence a comparison was made with the ATH of diketones run in the
2.5 F/T. As shown in Table 3, whilst there is no difference in the de
and ee, the reduction in the 0.2 F/T proceeded at significantly faster
1,1ꢀ-(1,4-phenylene)diethanol were produced with isolated yields
of 90% and 91% in 25 h in the 0.2 F/T solution (Entries 1 and 3,
Table 3). In contrast, the reduction in the 2.5 F/T afforded much
lower isolated yields in a longer reaction time (Entries 2 and 4,
Table 3).
(s) Y.D. Ju, L.W. Xu, L. Li, G.Q. Lai, H.Y. Qiu, J.X. Jiang, Y.X. Lu, Tetrahedron Lett.
49 (2008) 6773–6777;
(t) C.A. Sandoval, Y.H. Li, K.L. Ding, R. Noyori, Chem. Asian J. 3 (2008) 1801–1810;
(u) C. Wang, X.F. Wu, J.L. Xiao, Chem. Asian J. 3 (2008) 1750–1770;
(v) Z.Q. Zhou, Q.O. Ma, Y. Sun, A.Q. Zhang, L. Li, Heteroat. Chem. 21 (2010)
505–514.
[6] (a) K. Mikami, K. Wakabayashi, Y. Yusa, K. Aikawa, Chem. Commun. (2006)
2365–2367;
(b) L. Jiang, T.F. Wu, Y.C. Chen, J. Zhu, J.G. Deng, Org. Biomol. Chem. 4 (2006)
3319–3324;
(c) R. Jiang, X.L. Sun, W. He, H. Chen, Y.Q. Kuang, Appl. Organomet. Chem. 23
(2009) 179–182;
(d) T. Hamada, T. Torii, T. Onishi, K. Izawa, T. Ikariya, J. Org. Chem. 69 (2004)
7391–7394;
(e) G. Vo-Thanh, A. Aupoix, C. Bournaud, Eur. J. Org. Chem. (2011) 2772–2776;
(f) F. Tinnis, H. Adolfsson, Org. Biomol. Chem. 8 (2010) 4536–4539;
(g) R. Montalvo-Gonzalez, D. Chavez, G. Aguirre, M. Parra-Hake, R. Somanathan,
J. Braz. Chem. Soc. 21 (2010) 431–435;
(h) J. Han, S. Kang, H.K. Lee, Chem. Commun. 47 (2011) 4004–4006;
(i) S. Kang, J. Han, E.S. Lee, E.B. Choi, H.K. Lee, Org. Lett. 12 (2010) 4184–4187;
(j) D.S. Matharu, D.J. Morris, A.M. Kawamoto, G.J. Clarkson, M. Wills, Org. Lett.
7 (2005) 5489–5491;
4. Conclusion
A simple, easy-to-operate reduction system for the ATH of
ketones has been developed. The Ru-1/0.2 F/T system is particularly
suited to those ketones that are insoluble in water or are slow to be
reduced in or sensitive to the azeotropic 2.5 F/T. In comparison with
the commonly-used azeotropic 2.5 F/T system, this new protocol is
more efficient and easy to scale-up. Whilst ATH in azeotropic 2.5
F/T has been widely exploited, the effect of the F/T molar ratios on
the efficacy of the reduction has seldom been subjected to scrutiny.
This study shows that the F/T ratio has a significant effect on both
theATHrateandenantioselectivity, a findingreminiscentof thepH-
dependence of ATH in aqueous media and of value to laboratory or
commercial applications of ATH.
(k) N.A. Cortez, G. Aguirre, M. Parra-Hake, R. Somanathan, Tetrahedron Lett. 48
(2007) 4335–4338.
[7] (a) J.S. Chen, Y.Y. Li, Z.R. Dong, B.Z. Li, J.X. Gao, Tetrahedron Lett. 45 (2004)
8415–8418;
(b) C. Diez, U. Nagel, Appl. Organomet. Chem. 24 (2010) 509–516;
(c) Z.R. Dong, Y.Y. Li, J.S. Chen, B.Z. Li, Y. Xing, J.X. Gao, Org. Lett. 7 (2005)
1043–1045;
(d) H.W. Krause, A.K. Bhatnagar, J. Organomet. Chem. 302 (1986) 265–267;
(e) Y.Y. Li, H. Zhang, J.S. Chen, X.L. Liao, Z.R. Dong, J.X. Gao, J. Mol. Catal. A: Chem.
218 (2004) 153–156;
(f) D.G.I. Petra, P.C.J. Kamer, A.L. Spek, H.E. Schoemaker, P.W.N.M. van Leeuwen,
J. Org. Chem. 65 (2000) 3010–3017;
(g) R. Spogliarich, G. Zassinovich, J. Kaspar, M. Graziani, J. Mol. Catal. 16 (1982)
359–361;
Acknowledgements
(h) X.Y. Sun, G. Manos, J. Blacker, J. Martin, A. Gavriilidis, Org. Process Res. Dev.
8 (2004) 909–914;
(i) T. Thorpe, J. Blacker, S.M. Brown, C. Bubert, J. Crosby, S. Fitzjohn, J.P. Mux-
worthy, J.M.J. Williams, Tetrahedron Lett. 42 (2001) 4041–4043;
(j) X.Q. Zhang, Y.Y. Li, Z.R. Dong, W.Y. Shen, Z.B. Cheng, J.X. Gao, J. Mol. Catal. A:
Chem. 307 (2009) 149–153;
Financial support from the Graduate School of Xi’an Jiaotong
University and the Scholarship Award for Excellent Doctoral Stu-
dent granted by the Ministry of Education of China are gratefully
acknowledged. Thanks also go to the University of Liverpool for
financial support.
(k) X.Q. Zhang, Y.Y. Li, H. Zhang, J.X. Gao, Tetrahedron: Asymmetry 18 (2007)
2049–2054;
(l) G.F. Zi, C.L. Yin, Acta Chim. Sinica 56 (1998) 484–488.
[8] (a) X.H. Cheng, P.N. Horton, M.B. Hursthouse, K.K. Hii, Tetrahedron: Asymmetry
15 (2004) 2241–2246;
References
[1] R. Malacea, R. Poli, E. Manoury, Coord. Chem. Rev. 254 (2010) 729–752.
[2] (a) K. Ohkubo, K. Hirata, K. Yoshinaga, M. Okada, Chem. Lett. 5 (1976), 183-184;
(b) G. Descotes, D. Sinou, Tetrahedron Lett. (1976) 4083–4086.
[3] R.A.W. Johnstone, A.H. Wilby, I.D. Entwistle, Chem. Rev. 85 (1985) 129–170.
[4] S. Hashiguchi, A. Fujii, J. Takehara, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 117
(1995) 7562–7563.
[5] (a) R. Noyori, M. Yamakawa, S. Hashiguchi, J. Org. Chem. 66 (2001), 7931-7944;
(b) K. Matsumura, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 119
(1997) 8738–8739;
(b) J. Hannedouche, G.J. Clarkson, M. Wills, J. Am. Chem. Soc. 126 (2004)
986–987;
(c) F.K. Cheung, A.M. Hayes, J. Hannedouche, A.S.Y. Yim, M. Wills, J. Org. Chem.
70 (2005) 3188–3197;
(d) X.F. Wu, D. Vinci, T. Ikariya, J.L. Xiao, Chem. Commun. (2005) 4447–4449;
(e) T. Ohkuma, N. Utsumi, K. Tsutsumi, K. Murata, C. Sandoval, R. Noyori, J. Am.
Chem. Soc. 128 (2006) 8724–8725;
(f) F.K. Cheung, C.X. Lin, F. Minissi, A.L. Criville, M.A. Graham, D.J. Fox, M. Wills,
Org. Lett. 9 (2007) 4659–4662;
(g) S. Enthaler, B. Hagemann, S. Bhor, G. Anilkumar, M.K. Tse, B. Bitterlich, K.
Junge, G. Erre, M. Beller, Adv. Synth. Catal. 349 (2007) 853–860;
(h) C.A. Madrigal, A. Garcia-Fernandez, J. Gimeno, E. Lastra, J. Organomet. Chem.
693 (2008) 2535–2540;
(i) D. Guijarro, O. Pablo, M. Yus, Tetrahedron Lett. 50 (2009) 5386–5388;
(j) J. Li, Y.M. Zhang, D.F. Han, Q. Gao, C. Li, J. Mol. Catal. A: Chem. 298 (2009)
31–35;
(k) S. Parambadath, A.P. Singh, Catal. Today 141 (2009) 161–167;
(l) M. Watanabe, K. Murata, J. Synth. Org. Chem. Jpn. 67 (2009) 397–399;
(m) S.Y. Bai, H.Q. Yang, P. Wang, J.S. Gao, B. Li, Q.H. Yang, C. Li, Chem. Commun.
46 (2010) 8145–8147;
(n) Z.H. Weng, S. Muratsugu, N. Ishiguro, S. Ohkoshi, M. Tada, Dalton Trans. 40
(2011) 2338–2347.
(c) K.J. Haack, S. Hashiguchi, A. Fujii, T. Ikariya, R. Noyori, Angew. Chem. Int. Ed.
36 (1997) 285–288;
(d) S. Hashiguchi, A. Fujii, K.J. Haack, K. Matsumura, T. Ikariya, R. Noyori, Angew.
Chem. Int. Ed. 36 (1997) 288–290;
(e) S. Hashiguchi, N. Uematsu, R. Noyori, J. Synth. Org. Chem. Jpn. 55 (1997)
99–109;
(f) R. Noyori, S. Hashiguchi, Acc. Chem. Res. 30 (1997) 97–102;
(g) S. Inoue, K. Nomura, S. Hashiguchi, R. Noyori, Y. Izawa, Chem. Lett. (1997)
957–958;
(h) S. Hashiguchi, A. Fujii, R. Noyori, J. Synth. Org. Chem. Jpn. 54 (1996) 818–828;
(i) N. Uematsu, A. Fujii, S. Hashiguchi, T. Ikariya, R. Noyori, J. Am. Chem. Soc.
118 (1996) 4916–4917;
(j) A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori, J. Am. Chem. Soc.
118 (1996) 2521–2522;
[9] (a) N. Meyer, A.J. Lough, R.H. Morris, Chem. Eur. J. 15 (2009) 5605–5610;
(b) A. Mikhailine, A.J. Lough, R.H. Morris, J. Am. Chem. Soc. 131 (2009)
(k) J. Takehara, S. Hashiguchi, A. Fujii, S. Inoue, T. Ikariya, R. Noyori, Chem.