COMMUNICATIONS
peroxide, and 20% aqueous NaOH were added successively. The mixture
was stirred for 1 h at the same temperature, and then warmed to room
temperature. The reaction was monitored by thin-layer chromatography
(TLC), and when there was no more starting material (ca. 2 h), ether was
added, and the aqueous layer was extracted with dichloromethane. The
pure N-protected leucinamide 4 was obtained in 94% yield from the
cyanation product (two steps) after isolation by column chromatography on
silica gel (CHCl3/MeOH 19/1). 1H NMR (CDCl3): d 0.85 (d, 3H, J
6.4 Hz), 0.95 (d, 3H, J 6.4 Hz), 1.58 ± 1.63 (m, 1H), 1.78 ± 1.87 (m, 2H),
2.77 (s, 3H), 3.82 (s, 3H), 3.82 (brs, 1H), 6.71 ± 6.82 (m, 3H), 6.88 (brs, 1H);
13C NMR (CDCl3): d 18.6, 21.7, 23.35, 23.38, 24.9, 55.6, 60.0, 108.9, 120.8,
124.0, 127.3, 135.6, 149.8, 178.6.
[5] M. S. Iyer, K. M. Gigstad, N. D. Namdev, M. Lipton, J. Am. Chem.
Soc. 1996, 118, 4910 ± 4911.
[6] Quite recently, Jacobsen et al. reported elegant catalytic asymmetric
Strecker reactions: a) M. S. Sigman, E. N. Jacobsen, J. Am. Chem. Soc.
1998, 120, 4901 ± 4902; b) M. S. Sigman, E. N. Jacobsen, J. Am. Chem.
Soc. 1998, 120, 5315 ± 5316.
[7] a) H. Ishitani, M. Ueno, S. Kobayashi, J. Am. Chem. Soc. 1997, 119,
7153 ± 7154; b) S. Kobayashi, H. Ishitani, M. Ueno, J. Am. Chem. Soc.
1998, 120, 431 ± 432; see also c) H. Fujieda, M. Kanai, T. Kambara, A.
Iida, K. Tomioka, J. Am. Chem. Soc. 1997, 119, 2060 ± 2061.
[8] S. Kobayashi, S. Komiyama, H. Ishitani, Angew. Chem. 1998, 110,
1026 ± 1028; Angew. Chem. Int. Ed. 1998, 37, 979 ± 981.
[9] For the use of 6,6'-dibromo-1,1'-bi-2-naphthol, see a) M. Terada, Y.
Motoyama, K. Mikami, Tetrahedron Lett. 1994, 35, 6693 ± 6696; b) H.
Sasai, T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh, M. Shibasaki, J.
Org. Chem. 1995, 60, 7388 ± 7389.
[10] Bu3SnCN is commercially available; a) J. G. A. Luijten, G. J. M.
van der Kerk, Investigations in the Field of Organotin Chemistry, Tin
Research Institute, Greenford, 1995, p. 106; b) M. Tanaka, Tetrahe-
dron Lett. 1980, 21, 2959 ± 2962; c) S. Harusawa, R. Yoneda, Y. Omori,
T. Kurihara, Tetrahedron Lett. 1987, 28, 4189 ± 4190.
5: The N-protected aminoamide 4 (0.38 mmol) was dissolved in 80% wet
MeOH (5.0 mL). CAN (2.0 mmol) was added at 08C, and the mixture was
stirred for 6 h at the same temperature. Water was added, and the acidic
solution was washed with dichloromethane. The aqueous solution was
made alkaline by adding 1n NaOH, and was then extracted with ethyl
acetate. The combined organic layers were washed with brine and dried
over Na2SO4. The solvent was removed, and the pure d-leucinamide 5 was
1
obtained without further purification. H NMR (CDCl3): d 0.93 (d, 3H,
J 6.4 Hz), 0.97 (d, 3H, J 6.4 Hz), 1.39 (ddd, 1H, J 4.9, 9.8, 13.8 Hz),
1.65 (ddd, 1H, J 4.3, 4.9, 13.8 Hz), 1.55 ± 1.80 (m, 3H), 3.76 (dd, 1H, J
4.3, 9.8 Hz), 6.37 (brs, 1H), 7.22 (brs, 1H); 13C NMR (CDCl3): d 21.0,
[11] P. J. Cox, W. Wang, V. Snieckus, Tetrahedron Lett. 1992, 33, 2253 ±
2256.
[12] This could be partially due to the lower reactivity of (R)-3-Br-BINOL
compared to (R)-6-Br-BINOL and equilibration of the coordination
of NMI to the zirconium center. After careful examination, the best
results and reproducibility were obtained when the catalyst was
prepared by combining 1 equiv of Zr(OtBu)4, 1 equiv of (R)-6-Br-
BINOL, 1 equiv of (R)-3-Br-BINOL), and 3 equiv of NMI.
[13] When TMSCN was used in this system, moderate yields and moderate
enantiomeric excesses were observed. The reaction of the aldimine
prepared from 1-naphthaldehyde and 2-aminophenol with TMSCN
led to the corresponding a-aminonitrile in 33% yield and with
63% ee; with triethylsilyl cyanide this product was obtained in 65%
yield and with 63% ee (not optimized).
23.1, 24.4, 43.7, 53.1, 178.8; HR-MS calcd for C6H14N2O [M ]: 130.1107,
found: 130.1091; (R)-leucinamide hydrochloride: [a]D25
8.2 (c 0.22 in
H2O).[18]
Received: June 29, 1998 [Z12067IE]
German version: Angew. Chem. 1998, 110, 3369 ± 3372
Keywords: amino acids ´ asymmetric catalysis ´ asymmetric
synthesis ´ Lewis acids ´ zirconium
[1] Y. M. Shafran, V. A. Bakulev, V. S. Mokrushin, Russ. Chem. Rev. 1989,
58, 148 ± 162.
[14] a) J. M. Brown, A. C. Chapman, R. Harper, D. J. Mowthorpe, A. G.
Davies, P. J. Smith, J. Chem. Soc. Dalton Trans. 1972, 338 ± 341;
b) A. G. Davies, D. C. Kleinschmidt, P. R. Palan, S. C. Vasishtha, J.
Chem. Soc. C 1971, 3972 ± 3976.
[2] a) L. M. Weinstock, P. Davis, B. Handelsman, R. Tull, J. Org. Chem.
1967, 32, 2823 ± 2829; b) W. L. Matier, D. A. Owens, W. T. Comer, D.
Deitchman, H. C. Ferguson, R. J. Seidehamel, J. R. Young, J. Med.
Chem. 1973, 16, 901 ± 908.
[15] Quite recently, we developed scandium triflate catalyzed Strecker
reactions of aldehydes, amines, and Bu3SnCN (achiral methods). In
these reactions, the tin compounds were completely recovered by
environmentally friendly chemical processes: S. Kobayashi, T. Busu-
jima, S. Nagayama, Chem. Commun. 1998, 981 ± 982.
[16] S. Cacchi, D. Misiti, F. L. Torre, Synthesis 1980, 243 ± 244.
[17] D. R. Kronenthal, C. Y. Han, M. K. Taylor, J. Org. Chem. 1982, 47,
2765 ± 2768.
[18] (S)-Leucinamide hydrochloride: [a]2D5 10 (c 5 in H2O) (Beilstein
4 (3), 1414). (S)-Leucinamide hydrochloride is commercially available
(Aldrich).
[3] a) I. Ojima, S. Inaba, K. Nakatsugawa, Chem. Lett. 1975, 331 ± 334;
b) K. Mai, G. Patil, Tetrahedron Lett. 1984, 25, 4583 ± 4586; c) S.
Kobayashi, H. Ishitani, M. Ueno, Synlett 1997, 115 ± 116.
[4] Reviews, a) R. M. Williams, Synthesis of Optically Active a-Amino
Acids, Pergamon, Oxford, 1989; b) R. M. Williams, J. A. Hendrix,
Chem. Rev. 1992, 92, 889 ± 917; c) R. O. Duthaler, Tetrahedron 1994,
50, 1539 ± 1650; see also: d) H. Kunz, K. Rück, Angew. Chem. 1993,
105, 355 ± 377; Angew. Chem. Int. Ed. Engl. 1993, 32, 336 ± 358, and
references therein; e) F. A. Davis, R. E. Reddy, P. S. Portonovo,
Tetrahedron Lett. 1994, 35, 9351 ± 9354; f) T. K. Chakraborty, K. A.
Hussain, G. V. Reddy, Tetrahedron 1995, 51, 9179 ± 9190.
3188
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
1433-7851/98/3722-3188 $ 17.50+.50/0
Angew. Chem. Int. Ed. 1998, 37, No. 22