June 2003
629
Physical properties and spectral data are given in Table 1.
6) Tidwell R. R., Geratz J. D., Dubovi E. J., J. Med. Chem., 26, 294—298
(1983).
7) Nochi S., Shimomura N., Hattori T., Sato T., Miyake Y., Tanizawa K.,
Chem. Pharm. Bull., 37, 2855—2857 (1989).
8) Matsumoto O., Masuda H., Taga T., Kuroda Y., Machida K., Chem.
Pharm. Bull., 38, 2015—2017 (1990).
3-Formyl-4-hydroxyphenylguanidine Hydrochloride (6) To a solution
of 5 (1.12 g, 5.0 mmol) in EtOH (5 ml) was added 2 M HCl (5 ml), and the
precipitate was collected. Recrystallization from EtOH–Et2O give a pale yel-
low crystalline powder (0.77 g, yield 71%). Physical properties and spectral
data are given in Table 1.
m-Guanidinosalicylidene-L-alaninato(aqua)copper(II) Hydrochloride
(7b) Synthesis was carried out following the procedure reported for m-
9) Senokuchi K., Nakai H., Nakayama Y., Odagaki Y., Sasaki K., Kato
M., Maruyama T., Miyazaki T., Ito H., Kamiyasu K., Kim S., Kawa-
mura M., Hamanaka N., J. Med. Chem., 38, 2521—2523 (1995).
10) Odagaki Y., Nakai H., Senokuchi K., Kawamura M., Hamanaka N.,
Nakamura M., Tomoo K., Ishida T., Biochemistry, 34, 12849—12853
(1995).
amidinosalicylidene-L-alaninato(aqua)copper(II).23) To
a solution of 6
(0.22 g, 1.0 mmol) and L-alanine (0.09 g, 1.0 mmol) in water (2 ml) was
added a solution of copper(II) acetate monohydrate (0.2 g, 1.0 mmol) in
water (2 ml) and the mixture was stirred for 3 h at 50 °C. The reaction mix-
ture was concentrated and subjected to Sephadex LH-20 column chromatog- 11) Stürzebecher J., Prasa D., Wikström P., Vieweg H., J. Enzyme Inhib., 9,
raphy using MeOH. The eluate was evaporated to dryness in vacuo, and the 87—99 (1995).
solid residue was recrystallized from H2O–EtOH to give 7b (0.30 g, yield 12) Stürzebecher J., Prasa D., Hauptmann J., Vieweg H., Wikström P., J.
84%) as a green crystalline powder. Physical properties and spectral data are
given in Table 2.
m-Guanidinosalicylidene-L-alaninato(aqua)zinc(II) Hemihydrate Hy-
Med. Chem., 40, 3091—3099 (1997).
13) Bartunik H. D., Summers L. J., Bartsch H. H., J. Mol. Biol., 210,
813—828 (1989).
drochloride (8b) Synthesis was carried out by the same procedure re- 14) Renatus M., Bode W., Huber R., Stürzebecher J., Stubbs M. T., J. Med.
ported for (N-salicylidene amino acidato)zinc(II) complexes.36,38) Equimolar
Chem., 41, 5445—5456 (1998).
amounts of 6, L-alanine, and zinc(II) acetate dihydrate (1.0 mmol) were dis- 15) Marquart M., Walter J., Deisenhofer J., Bode W., Huber R., Acta Crys-
solved in H2O–MeOH (15 ml), and the mixture was stirred for 8 h at room tallogr. Sect. B, 39, 480—490 (1983).
temperature. The reacted precipitate was collected by filtration. Complex 16) Katz B. A., Clark J. M., Finer-Moore J. S., Jenkins T. E., Johnson C.
was purified by recrystallization from H2O–EtOH and dried under a vacuum.
A white powder was obtained (0.2 g, yield 53%). Physical properties and
spectral data are given in Table 2.
R., Ross M. J., Luong C., Moore W. R., Stroud R. M., Nature (Lon-
don), 391, 608—612 (1998).
17) Mangel W. F., Singer P. T., Cyr D. M., Umland T. C., Toledo D. L.,
Stroud R. M., Pflugrath J. W., Sweet R. M., Biochemistry, 29, 8351—
8357 (1990).
Potassium Bis(m-guanidinosalicylidene-L-alaninato)iron(III) Trihy-
drate (9b) Synthesis was carried out following the procedure reported for
potassium bis(m-amidinosalicylidene-L-alaninato)iron(III) (12b).24) A mix- 18) Matsumoto O., Taga T., Matsushima M., Higashi T., Machida K.,
ture of 6 (0.43 g, 2.0 mmol), L-alanine (0.18 g, 2.0 mmol), and potassium hy-
Chem. Pharm. Bull., 38, 2253—2255 (1990).
droxide (0.23 g, 4.1 mmol) in H2O–EtOH (15 ml) was stirred for several 19) Turk D., Sturzebecher J., Bode W., FEBS Lett., 287, 133—138 (1991).
minutes at room temperature. To the reaction mixture, an ethanolic solution 20) Glusker J. P., Adv. Protein Chem., 42, 1—76 (1991).
of iron(II) acetate enneahydrate (0.17 g, 1.0 mmol) was added over about 21) Brinen L. S., Willett W. S., Craik C. S., Fletterick R. J., Biochemistry,
15 min. The solution was stirred for 8 h at room temperature and evaporated
35, 5999—6009 (1996).
to dryness. The residue was subjected to a column chromatography on 22) Katz B. A., Luong C., J. Mol. Biol., 292, 669—684 (1999).
Sephadex LH-20 (MeOH). The eluate was concentrated until precipitation 23) Toyota E., Chinen C., Sekizaki H., Itoh K., Tanizawa K., Chem.
of the product occurred. The precipitate was collected by filtration, washed
with EtOH and Et2O, and dried under a vacuum. A reddish brown powder
was obtained (0.4 g, yield 31%). Physical properties and spectral data are
given in Table 2.
Pharm. Bull., 44, 1104—1106 (1996).
24) Toyota E., Miyazaki H., Itoh K., Sekizaki H., Tanizawa K., Chem.
Pharm. Bull., 47, 116—119 (1999).
25) Toyota E., Ng K. K. S., Sekizaki H., Itoh K., Tanizawa K., James M.
N. G., J. Mol. Biol., 305, 471—479 (2001).
m-Amidinosalicylidene-L-alaninato(aqua)zinc(II) Hemihydrate Hy-
drochloride (10b) Equimolar amounts of 3-formyl-4-hydroxybenzamidine 26) Bernatowicz M. S., Wu Y., Matsueda G. R., J. Org. Chem., 57, 2497—
hydrochloride, L-alanine, and zinc(II) acetate dihydrate (1.0 mmol) were dis- 2502 (1992).
solved in H2O–MeOH (15 ml) and then mixture was stirred for 8 h at room 27) Bernatowicz M. S., Wu Y., Matsueda G. R., Tetrahedron Lett., 34,
temperature. The complex was purified by recrystallization from 3389—3392 (1993).
H2O–MeOH and dried under a vacuum. A white powder was obtained 28) Goto T., Nakanishi K., Ohashi M., Bull. Chem. Soc. Jpn., 30, 723—
(0.2 g, yield 55%). 725 (1957).
Determination of Inhibitory Activity (Ki) of Chelates Enzyme activ- 29) Heinert D., Martell A. E., J. Am. Chem. Soc., 84, 3257—3263 (1962).
ity was determined in 50 mM Tris–HCl buffer containing 20 mM CaCl2 (pH
30) Burrows R. C., Bailar J. C., Jr., J. Am. Chem. Soc., 88, 4150—4155
8) using benzoyl-L-arginine p-nitroanilide (BAPA) as a substrate. Determina-
(1966).
tion of Ki values was carried out as follows: Concentrations of the inhibitor 31) Kovacic J. E., Spectrochim. Acta, Part A, 23, 183—187 (1967).
and trypsin used in the kinetic analysis were 10Ϫ4—10Ϫ5 M and 10Ϫ6 M, re-
32) Nakahara A., Bull. Chem. Soc. Jpn., 32, 1195—1199 (1959).
spectively. Hydrolytic rates in the presence of chelate were determined and 33) Ueki T., Ashida T., Sasada Y., Kakudo M., Acta Crystallogr., 22,
the Ki values were calculated according to the method of Dixon42) using a
870—878 (1967).
linear regression program.
34) Hämäläinen R., Turpeinen U., Acta Chem. Scand., 43, 15—18 (1989).
35) Bowden F. L., Carpenter R. P., Parish R. V., Pollock R. D., Inorg.
Chim. Acta, 23, 35—36 (1977).
Acknowledgments This work was supported in part by the Akiyama
Foundation and the High Technology Research Program from the Ministry 36) O’Connor M. J., Ernst R. E., Schoenborn J. E., Holm R. H., J. Am.
of Education, Culture, Sports, Science, and Technology of Japan.
Chem. Soc., 90, 1744—1752 (1968).
37) Leussing D. L., Bai K. S., Anal. Chem., 40, 575—581 (1968).
38) Casella L., Gullotti M., J. Am. Chem. Soc., 103, 6338—6347 (1981).
39) Koike H., Nippon Kagaku Zasshi, 83, 917—923 (1962).
40) Rogana E., Nelson D. L., Leite L. F. F., Mares-Guia M., J. Chem. Res.
(S), 1985, 286—287.
References
1) Mares-Guia M., Shaw E., J. Biol. Chem., 240, 1579—1585 (1965).
2) Mares-Guia M., Shaw E., Cohen W., J. Biol. Chem., 242, 5777—5781
(1967).
3) Mares-Guia M., Shaw E., J. Biol. Chem., 242, 5782—5788 (1967).
4) Tamura Y., Hirado M., Okamura K., Minato Y., Fujii S., Biochim. Bio-
phys. Acta, 484, 417—422 (1977).
41) Inagami T., “Proteins. Structure and Function,” Vol. 1, ed. by Funatsu
M., Hiromi K., Murachi T., Narita K., Kodansha, Tokyo, 1971, pp. 1—
83.
5) Tidwell R. R., Geratz J. D., J. Med. Chem., 21, 613—623 (1978).
42) Dixon M., Biochem. J., 55, 170—171 (1953).