J.-L. Peglion et al. / Bioorg. Med. Chem. Lett. 19 (2009) 2133–2138
2137
O
O
O
O
HN
O
Cl
H
H
H
N
H
N
H
N
H
b
a
HO
O
O
(R,R)-6
31
30
O
O
O
O
O
O
HN
H
H
H
N
H
N
H
O
N
H
c
d
e
HN
N
O
32
(R,R)-20
33
Scheme 6. Preparation of compound 20. Reagents and conditions: (a) SOCl2, DMF, toluene, 97%; (b) MeONH2, K2CO3, AcOEt, H2O, 63%; (c) (i) s-BuLi, TMEDA, THF, (ii) CH3I; (d)
(i) s-BuLi, DMF, THF, (ii) HCl, THF, 25% on two steps; (e) TiCl3, EtOH, reflux, 31%.
Table 2
disubstituted amide derivatives were devoid of activity. On the
other hand, transformation of this primary amide function in lac-
tam (R,R)-15 or lactone (R,R)-16 improved both potency and
selectivity, providing that the additional ring was five-membered
one. A five-membered ring is also requisite for maximal efficacy
since the six-membered lactam (R,R)-19 was less active. Since
(R,R)-15 behaved as a potent D3 agonist in vitro with marked
Affinities of compounds 15–20 (I-B) at hD3 and hD2 dopamine receptors as
determined by displacement of [3H]-spiperone
Affinity (pKi)a
Selectivityb
hD3
hD2L
Ki(hD2)/Ki(hD3)
(R,R)-15
(S,S)-15
(R,R)-16
(R,R)-17
(R,R)-18
(R,R)-19
(R,R)-20
(R,R)-2
8.38 0.07
6.05 0.30
8.12 0.09
5.66 0.02
6.92 0.03
7.42 0.03
7.72 0.05
7.83 0.15
7.44 0.06
6.08 0.18
6.30 0.07
5.69 0.19
<5
5.83 0.04
6.11 0.08
5.92 0.01
5.92 0.10
6.16 0.06
199
0.5
250
—
12.5
20
63
80
20
selectivity towards D2 receptors ([35S]GTP
cS, pEC50 = 6.57 0.2,
Emax = 54%), further testing in animal models of Parkinson and
depression are currently under progress and results will be re-
ported in due course.
Ropinirole
Acknowledgments
a,b
See Table 1.
Single crystal X-ray diffraction was performed by Mrs. P. Retail-
leau at the Institut de Chimie des Substances Naturelles at Gif sur
Yvette (France). We are indebted to Mr. C. Nisole and Mrs. C. Scha-
effer for their help with spectroscopic and crystallographic data,
and to Ms. C. Rivalland for excellent secretarial assistance.
Table 3
Activation of hD3 receptors by 2, 15, 16, 19 as determined by an antibody capture/
scintillation proximity assay of [35S]GTP
S binding to Gai3
c
(R,R)-2
(R,R)-15
(R,R)-16
(R,R)-19
a
pEC50
Emax
8.64 0.07
8.85 0.04
74.2% 0.32
8.64 0.02
74% 5.00
8.33 0.17
34% 2.70
References and notes
68%
2
1. Vallone, D.; Picetti, R.; Borelli, E. Neurosci. Biobehav. Rev. 2000, 24, 125.
2. Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwartz, J. C. Nature
1990, 347, 146.
a
pEC50, ꢀlog(effective concentration50).
3. Joyce, J. N. Pharmacol. Ther. 2001, 90, 231.
4. Neve, K. A.; Seamans, J. K.; Trantham-Davidson, H. J. Recept. Signal Transduct.
Res. 2004, 24, 165.
5. Sokoloff, P.; Diaz, J.; Le Foll, B.; Guillin, O.; Leriche, L.; Bezard, E.; Gross, C. CNS
Neurol. Disord. Drug Targets 2006, 5, 25.
6. Millan, M. J.; Brocco, M. Therapie 2008, 63, 187.
7. Xi, Z. X.; Gardner, E. L. CNS Drug Rev. 2007, 13, 240.
8. Newman-Tancredi, A.; Cussac, D.; Audinot, V.; Nicolas, J. P.; De Ceuninck, F.;
Boutin, J. A.; Millan, M. J. J. Pharmacol. Exp. Ther. 2002, 303, 805.
9. Gallagher, D. A.; Schrag, A. CNS Drugs 2008, 22, 563.
10. Yamamoto, M.; Schapira, A. H. Expert. Rev. Neurother. 2008, 8, 671.
11. Whone, A. L.; Watts, R. L.; Stoessl, A. J.; Davis, M.; Reske, S.; Nahmias, C.; Lang,
A. E.; Rascol, O.; Ribeiro, M. J.; Remy, P.; Poewe, W. H.; Hauser, R. A.; Brooks, D.
J. REAL-PET Study Group. Ann. Neurol. 2003, 54, 93.
12. Chen, S.; Zhang, X.; Yang, D.; Du, Y.; Li, L.; Li, X.; Ming, M.; Le, W. FEBS Lett.
2008, 582, 603.
13. Millan, M. J.; Audinot, V.; Rivet, J. M.; Gobert, A.; Vian, J.; Prost, J. F.; Spedding,
M.; Peglion, J. L. Eur. J. Pharmacol. 1994, 260, R3.
14. Millan, M. J.; Peglion, J. L.; Vian, J.; Rivet, J. M.; Brocco, M.; Gobert, A.; Newman-
Tancredi, A.; Dacquet, C.; Bervoets, K.; Girardon, S. J. Pharmacol. Exp. Ther. 1995,
275, 885.
15. Gobert, A.; Rivet, J. M.; Audinot, V.; Cistarelli, L.; Spedding, M.; Vian, J.; Peglion,
J. L.; Millan, M. J. J. Pharmacol. Exp. Ther. 1995, 275, 899.
16. Peglion, J. L.; Vian, J.; Goument, B.; Despaux, N.; Audinot, V.; Millan, M. J. Bioorg.
Med. Chem. Lett. 1997, 7, 881.
17. Audinot, V.; Newman-Tancredi, A.; Gobert, A.; Rivet, J. M.; Brocco, M.; Lejeune,
F.; Gluck, L.; Despote, I.; Bervoets, K.; Dekeyne, A.; Millan, M. J. J. Pharmacol.
Exp. Ther. 1998, 287, 187.
18. Millan, M. J.; Cussac, D.; Gobert, A.; Lejeune, F.; Rivet, J. M.; Mannoury La Cour,
C.; Newman-Tancredi, A.; Peglion, J. L. J. Pharmacol. Exp. Ther. 2004, 309, 903.
creased affinity at hD3 sites and, accordingly, selectivity (compare
20 and 19). Finally, as for compounds 10–14, substitution on the
nitrogen atom of the lactam ring was deleterious for activity since
17, the N-methyl derivative of (R,R)-15, is devoid of activity.
Subsequently, it was necessary to verify the efficacy of the most
potent and selective derivatives (R,R)-15, 16 and 19. Indeed, the
adjunction of the extra ring may in theory have transformed ago-
nist into antagonist activity. For this purpose, we assessed the abil-
ity of these three compounds to stimulate hD3 receptors. Table 3
shows their potency and maximal efficacies for activation of hD3
receptors expressed relative to those of dopamine-induced facilita-
tion of [35S]GTP
cS binding to Gai3, a G-protein isoform preferen-
tially recruited by hD3 and hD2 receptors.19,35
The five-membered ring lactam (R,R)-15 and lactone (R,R)-16
are comparable in potency and maximal efficacy to the agonist
(R,R)-2, but the six-membered ring lactam (R,R)-19, albeit as po-
tent as (R,R)-2, is much less efficacious suggesting that the size
of the extra ring plays an important role in determining ligand
efficacy.
Replacement of the amide function of S32504 by an ester,
acid, tetrazole or cyano function improved neither affinity at
D3 receptors nor selectivity versus D2 receptors, while mono or