Table 1
potential for rational structural alteration, and the impetus of
additional synthetic power and mechanistic information arising
from the distinct role of the two ligating atoms. The results
nicely complement those of Börner and co-workers on asym-
metric hydrogenation with mannitol-derived diphospho-
lanes.16
We thank EPSRC, DTI and Chiroscience (Dr Ulrich Berens),
Glaxo-Wellcome (Dr Andrew Payne), Robinson Bros. (Dr
Kelvyn Soars), SB (Dr Peter Sheldrake) and Zeneca FCMO (Dr
A. John Blacker) for support under the LINK Asymmetric
Synthesis Programme. We thank CNRS for support for leave of
absence (to D. C.). Johnson-Matthey kindly provided a loan of
RhCl3·3H2O and we thank Dr Ulrich Berens (Chirotech) for a
generous sample of the enantiomerically pure diol. We thank Dr
A. Boerner (Rostock) for a useful exchange of information (ref.
16).
Substrate
Catalyst precursor
Ee (%)
H
Ph
N
10b-OMe
11b-OMe
10b-OH
19 S
85 S
43 S
92 S
38 S
60 R
O
MeO
11b-OH
7b
Me
But
Ph
O
H
8b
H
12
Ph
58 S
67 S
82 S
88 S
10b-OMe
11b-OMe
10b-OH
11b-OH
7b
O
MeO
N
5
R
O
H
36 R
8b
H
13
Ph
O
77 S
72 S
90 Sa
11b-OMe
10b-OH
11b-OH
MeO
O
N
H
14
Conditions: substrate:catalyst 100:1, (COD)2RhBF4 as precursor
(HBF4·OMe2 deboronation in situ), 1.3 bar, MeOH, 1–3 h. a TfO2 instead
Notes and references
2
of BF4
.
1 H. Takaya, T. Ohta and R. Noyori, Catalytic Asymmetric Synthesis,
VCH, Weinheim, 1993, ch. 1; R. Noyori, Asymmetric Catalysis in
Organic Synthesis, Wiley, NY, 1994, ch. 2; A. Pfaltz, Houben-Weyl
Methods of Organic Chemistry, Vol. E21d 2.5.1.2, ed. G. Helmchen,
R. W. Hoffmann, J. Mulzer and E. Schaumann, Thieme, Stuttgart,
1995.
Me
Me
Ph
P
Ph
P
OMe
OMe
P
P
Me
Me
7b (R,R,RP)
8b (R,R,SP)
2 B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman and D. J.
Weinkauff, J. Am. Chem. Soc., 1977, 99, 5946.
RO
Me
RO
Me
P
Me
3 M. J. Burk, F. Bienewald, M. Harris and A. Zanotti-Gerosa, Angew.
Chem., Int. Ed., 1998, 37, 1931; M. J. Burk, C. S. Kalberg and A.
Pizzano, J. Am. Chem. Soc., 1998, 120, 4345, and earlier references.
4 J. K. Whitesell, Chem. Rev., 1989, 89, 1581; B. M. Trost and D. L. Van
Vranken, Angew. Chem., Int. Ed. Engl., 1992, 31, 228.
5 K. Inoguchi, S. Sakuraba and K. Achiwa, Synlett, 1992, 169; T.
Morimoto, M. Chiba and K. Achiwa, Chem. Pharm. Bull., 1993, 41,
1149; T. V. RajanBabu and A. L. Casalnuovo, J. Am. Chem. Soc., 1996,
118, 6325.
6 J. A. Ramsden, J. M. Brown, M. B. Hursthouse and A. I. Karalulov
Tetrahedron: Asymmetry, 1994, 5, 2033; J. A. Ramsden, T. Claridge and
J. M. Brown, J. Chem. Soc., Chem. Commun., 1995, 2469.
7 T. Imamoto, T. Oshiki, T. Onozawa, T. Kusumoto and K. Sato, J. Am.
Chem. Soc., 1990, 112, 5244; T. Imamoto, T. Yoshizawa, K. Hirose, Y.
Wada, H. Masuda, K. Yamaguchi and H. Seki, Heteroatom Chem.,
1995, 6, 99; M. Ohff, J. Holz, M. Quirmbach and A. Börner, Synthesis,
1998, 1391.
8 C.f. K. Bourumeau, A.-C. Gaumont and J.-M. Denis, Tetrahedron Lett.,
1997, 38, 1923.
9 M. J. Burk, J. E. Feaster, W. A. Nugent and R. L. Harlow J. Am. Chem.
Soc., 1993, 115, 10 125.
10 In 90% yield from the corresponding diol, L. F. Wiggins and D. J. C.
Wood, J. Chem. Soc., 1950, 1566; Y. Le Merrer, A Dureeault, C. Greck,
D. Micas-Languin, G. Gravier and J. C. Depezay, Heterocycles, 1983,
25, 541.
Ph
P
Ph
P
OMe
OMe
RO
RO
P
Me
10b-OH [R = H]
10b-OMe [R = Me]
(S,S,S,S,SP)
11b-OH [R = H]
11b-OMe [R = Me]
(S,S,S,S,RP)
provides the product of higher enantioselectivity. Changing the
solvent from MeOH to CH2Cl2 led to inferior rates and
selectivities in both these cases.
These preliminary results indicate that, contrary to expecta-
tion, the enantioselectivity is sensitive to remote oxygen
substituents in the phospholane ring. Inspection of molecular
models indicates that the MeO- or HO- groups are axial in the
5-membered ring of the phospholane, and in the vicinity of
substituents on the coordinated alkene. Hence the opportunity
exists for cooperative association through H-bonding between
ligand and coordinated reactant.15 The combination of good
enantioselectivities in simple unoptimised reactions make this
an attractive series of ligands for further investigation with the
Table 2
11 The absolute configuration of all product boranes was established by
CD in comparison with that of the diborane from (S,S)-DIPAMP, the
phospholane part being essentially CD transparent in the 240–400 nm
region. We warmly thank Dr Guiliano Siligardi, KCL, for this data.
12 Full details of the synthesis will be published separately; D. Carmichael
and J. M. Brown Tetrahedron: Asymmetry, in preparation.
13 L. McKinstry and T. Livinghouse, Tetrahedron Lett., 1994, 35, 9319.
14 (R,R)-DIPAMP (ref. 2) and the (S,S)-phospholane MeBPE (ref. 8) both
give S-amino acids on Rh asymmetric hydrogenation, hence 8b and 11b
constitute the configurationally matched ligands and 7b, 10b the
mismatched ligands.
Substrate
Catalyst precursor
Ee (%)
11b-OMe
11b-OH
85 R
95 R
HO2C
CO2Me
15
93 Ra
87 R
11b-OMe
11b-OH
MeO2C
MeO2C
CO2H
16
17
11b-OMe
11b-OH
85 R
15 M. Sawamura and Y. Ito, Chem. Rev., 1992, 92, 857; J. Holz, M.
Quirmbach and A. Borner, Synthesis, 1997, 983, and references cited
therein.
80 Ra
CO2Me
16 J. Holz, M. Quirmbach, U. Schmidt, D. Heller, R. Stürmer and A.
Börner, J. Org. Chem., 1998, 63, 8031.
Conditions: substrate:catalyst 100 :1, (COD)2RhBF4 as precursor,
(HBF4·OMe2 deboronation in situ), 1.3 bar, MeOH, 1–3 h. a 94% ee for 16
with TfO2 instead of BF4
.
2
Communication 8/08711C
262
Chem. Commun., 1999, 261–262