C O M M U N I C A T I O N S
Table 1. Effects of 4-Hydroxyproline and 4-Fluoroproline
Diastereomers on the Conformational Stability of a Collagen Triple
Helix with (XaaYaaGly)7 Strands
the Xaa position. We anticipate that the rational use of stereoelec-
tronic effects could enhance the stability of other proteins as well.
Tm (°C)a
Acknowledgment. We are grateful to D. R McCaslin and C.
L. Jenkins for advice. J.A.H. was supported by postdoctoral
fellowship AR48057 (NIH). This work was supported by Grant
AR44276 (NIH). CD and sedimentation equilibrium experiments
were performed at the University of Wisconsin-Madison Biophys-
ics Instrumentation Facility, which was established by Grants BIR-
9512577 (NSF) and RR13790 (NIH).
Xaa/Yaa
(XaaProGly)7
(ProYaaGly)7
Flp
Hyp
Pro
hyp
flp
no helix
no helixc
6-7d
45b
36b
6-7d
no helixe
33
no helixe
no helixb
a Temperature at the midpoint of the thermal transition as measured by
CD spectroscopy. “No helix” refers to Tm < 5 °C. b From ref 2. c Reported
for (HypProGly)10 in ref 12. d From ref 15. e Reported for (hypProGly)10
and (ProhypGly)10 in ref 13.
Supporting Information Available: Procedures and additional data
for syntheses and analyses reported herein (PDF). This material is
helix stability unfolding upon thermal denaturation (Figure 1B).
The midpoint of this transition is at 33 °C (Table 1). The linear
decrease in elipticity exhibited by (FlpProGly)7 is characteristic of
the unfolding of a single polypeptide chain. Sedimentation equi-
librium experiments confirm that (FlpProGly)7 but not (flpProGly)7
is a single strand at 4 °C, whereas both peptides are single strands
at 37 °C.
References
(1) For reviews, see: (a) Deslongchamps, P. Stereoelectronic Effects in
Organic Chemistry; Pergamon Press: New York, 1983. (b) Kirby, A. J.
The Anomeric Effect and Related Stereoelectronic Effects at Oxygen;
Springer-Verlag: New York, 1982. (c) Thatcher, G. R. J., Ed. The
Anomeric Effect and Associated Stereoelectronic Effects; American
Chemical Society: Washington, DC, 1993. (d) Juaristi, E.; Cuevas, G.
The Anomeric Effect; CRC Press: Boca Raton, FL, 1995.
(2) Bretscher, L. E.; Jenkins, C. L.; Taylor, K. M.; DeRider, M. L.; Raines,
R. T. J. Am. Chem. Soc. 2001, 123, 777-778.
(3) For reviews, see: (a) Fields, G. B.; Prockop, D. J. Biopolymers 1996, 40,
345-357. (b) Persikov, A. V.; Ramshaw, J. A. M.; Brodsky, B.
Biopolymers 2000, 55, 436-450. (c) Myllyharju, J.; Kivirikko, K. I. Ann.
Med. 2001, 33, 7-21. (d) Jenkins, C. L.; Raines, R. T. Nat. Prod. Rep.
2002, 19, 49-59.
(4) Ramshaw, J. A. M.; Shah, N. K.; Brodsky, B. J. Struct. Biol. 1998, 122,
86-91.
(5) (a) Holmgren, S. K.; Taylor, K. M.; Bretscher, L. E.; Raines, R. T. Nature
1998, 392, 666-667. (b) Holmgren, S. K.; Bretscher, L. E.; Taylor, K.
M.; Raines, R. T. Chem. Biol. 1999, 6, 63-70. For the effect of (2S,4R)-
4-aminoproline, see: (c) Babu, I. R.; Ganesh, K. N. J. Am. Chem. Soc.
2001, 123, 2079-2080.
(6) (a) Panasik, N., Jr.; Eberhardt, E. S.; Edison, A. S.; Powell, D. R.; Raines,
R. T. Int. J. Pept. Protein Res. 1994, 44, 262-260. (b) Eberhardt, E. S.;
Panasik, N., Jr.; Raines, R. T. J. Am. Chem. Soc. 1996, 118, 12261-
12266.
Apparently, stereoelectronic effects can operate adventitiously
(or deleteriously) in the Xaa position of collagen (Table 1). There,
flp is able to preorganize the φ and ψ dihedrals as in a triple helix
without encountering the steric conflicts that appear to plague hyp
in this position.9 Moreover, the 4S substituent in the Xaa position
has limited access to solvent, thus making fluorine better suited
than hydroxyl to occupy this position. Altogether, the gain in
stability upon replacing hyp with flp in the Xaa position exceeds
that of replacing Hyp with Flp in the Yaa position (Table 1).
The conformational stability of a (flpProGly)7 triple helix is less
than that of a (ProFlpGly)7 triple helix (Table 1). Two factors could
contribute to this lower stability. First, Flp in the Yaa position causes
favorable preorganization of all three main-chain dihedral angles
(φ, ψ, and ω). In the Xaa position, flp increases the probability of
ω adopting a cis (ω ) 0°) conformation,2 thus mitigating somewhat
the benefit accrued from the preorganization of φ and ψ. Second,
a Cγ-endo pucker is already favored in Pro,7 and flp only increases
that preference. In contrast, Flp has the more dramatic effect of
reversing the preferred ring pucker, thereby alleviating the entropic
penalty of triple-helix formation to a greater degree.
Because the stability of (flpProGly)7 exceeds that of (FlpProGly)7,
the preorganization of φ and ψ in the Xaa position is more important
than is the preorganization of ω. This constraint could be less
important for proline-poor regions of the triple helix, in which a
non-proline residue occupies the Xaa or Yaa position. The structure
of a crystalline collagen mimic indicates that proline-rich and
proline-poor regions have a distinct triple-helical twist,16 which
suggests that the factors that control stability could differ for these
regions. Indeed, replacement of proline in the Xaa position with
Hyp does increase the stability of a proline-poor region.17
The development of hyperstable collagens could lead to the
creation of new biomaterials for use in medical applications such
as wound healing, tissue welding, and tissue engineering.18 Triple
helices formed from proline-rich peptides are more stable than those
of proline-poor peptides of comparable size.19 Thus, the develop-
ment of hyperstable collagen materials will rely on proline-rich
sequences. Herein, we have shown that the conformational stability
of these sequences is enhanced by the stereoelectronics of flp in
(7) DeRider, M. L.; Wilkens, S. J.; Waddell, M. J.; Bretscher, L. E.; Weinhold,
F.; Raines, R. T.; Markley, J. L. J. Am. Chem. Soc. 2002, 124, 2497-
2505.
(8) (a) O’Hagan, D.; Bilton, C.; Howard, J. A. K.; Knight, L.; Tozer, D. J. J.
Chem. Soc., Perkin Trans. 2 2000, 605-607. (b) Briggs, C. R. S.;
O’Hagan, D.; Howard, J. A. K.; Yufit, D. S. J. Fluorine Chem. 2003,
119, 9-13. For an alternative explanation of the effect of electron-
withdrawing substituents on pyrrolidine ring pucker, see: (c) Improta,
R.; Benzi, C.; Barone, V. J. Am. Chem. Soc. 2001, 123, 12568-12577.
(9) Improta, R.; Mele, F.; Crescenzi, O.; Benzi, C.; Barone, V. J. Am. Chem.
Soc. 2002, 124, 7857-7865.
(10) Vitagliano, L.; Berisio, R.; Mazzarella, L.; Zagari, A. Biopolymers 2001,
58, 459-464.
(11) φ, C′i-1-Ni-CR -C′i; ψ, Ni-CR -C′i-Ni+1; ω, Oi-1-C′i-1-Ni-CR .
(12) Inouye, K.; Kobayahsi, Y.; Kyogoku, Y.; Kishida, Y.; Sakakibara, iS.;
Prockop, D. J. Arch. Biochem. Biophys. 1982, 219, 198-203.
(13) Inouye, K.; Sakakibara, S.; Prockop, D. J. Biochim. Biophys. Acta 1976,
420, 133-141.
i
i
(14) For reviews, see: (a) Welch, J. T.; Eswarakrishnan, S. Fluorine in
Bioorganic Chemistry; Wiley: New York, 1991. (b) Resnati, G. Tetra-
hedron 1993, 49, 9385-9445. (c) Ojima, I., McCarthy, J. R., Welch, J.
T., Eds. Biomedical Frontiers of Fluorine Chemistry; American Chemical
Society: Washington, DC, 1996. (d) O’Hagan, D.; Rzepa, H. S. Chem.
Commun. 1997, 645-652. (e) Marsh, E. N. G. Chem. Biol. 2000, 7,
R153-R157. (f) Yoder, N. C.; Kumar, K. Chem. Soc. ReV. 2002, 31,
335-341.
(15) Shaw, B. R.; Schurr, J. M. Biopolymers 1975, 14, 1951-1985.
(16) Kramer, R. Z.; Bella, J.; Mayville, P.; Brodsky, B.; Berman, H. M. Nat.
Struct. Biol. 1999, 6, 454-457.
(17) Bann, J. G.; Bachinger, H. P. J. Biol. Chem. 2000, 275, 24466-24469.
(18) (a) Werkmeister J. A.; Ramshaw, J. A. M. Collagen Biomaterials; Elsevier
Science: Barking, UK, 1992. (b) Ramshaw, J. A. M.; Werkmeister, J.
A.; Glattauer, V. Biotechnol. Genet. Eng. ReV. 1995, 13, 335-382.
(19) (a) Bhatnagar, R. S.; Rapaka, R. S. In Biochemistry of Collagen;
Ramachandran, G. N., Reddi, A. H., Eds.; Plenum: New York, 1976; pp
479-523. (b) Privalov, P. L. AdV. Protein Chem. 1982, 35, 1-104.
JA035881Z
9
J. AM. CHEM. SOC. VOL. 125, NO. 31, 2003 9263