Table 2 Diastereoselective iodoamidation of 3-acetoxybut-1-enylamines
with iodine
This work was supported by a grant from the High-
technology Development Project for Agriculture, Forestry and
Fisheries. We thank the Korea Science and Engineering
Foundation for a fellowship supporting the Postdoctoral
research of Dr Woo Song Lee.
Substratesa
Conditions
Productsb
Yieldc
AcO
I
OAc
92%
(sole)
I2,biphase,d
room temp. 3 h
R
R
N
Pf
NHPf
3 R = p-tolyl
3a
Notes and references
AcO
I
OAc
† Starting materials 3–9 were prepared by a sequential reaction, namely,
free animo acids were treated with TMSCl in MeOH to give methyl esters,
the amino groups of which were protected with PfBr in CH2Cl2. The methyl
esters were then subjected to reduction and Swern oxidation to afford
aldehydes, which were reacted with vinylmagnesium bromide to give
separable allylic alcohols.
‡ The relative stereochemistries of the corresponding acetonides trans-8 (J
= 8.1 Hz for the proton on oxygen) and cis-9 (J = 1.0 Hz for the a proton
on oxygen) were confirmed by coupling constant analysis.
90%
(25 : 1)
I2,biphase,
R
R
room temp. 3.5 h
N
NHPf
Pf
4 R = p-tolyl
4a
AcO
I
I
OAc
OAc
90%
(62 : 1)
I2,biphase,
room temp. 3 h
N
NHPf
Pf
5
6
5a
AcO
§ Selected data for 3a: colorless prisms, mp 67–68 °C; [a]2D2 +33.0 (c 1.3,
CHCl3); dH (500 MHz, CDCl3) 1.61 (3H,s), 2.37 (1H, dd, J 4.0, 13.6), 2.44
(1H, dd, J 6.7, 10.1), 2.67 (1H, dd, J 9.7, 13.6), 2.73 (1H, m), 3.00 (1H, dd,
J 2.7, 10.2), 3.28 (1H, dt, J 4.3, 5.1), 3.71 (3H, s), 4.56 (1H, t-like, J2,3, J3,4
5.1), 6.72 (2H, d, J 8.7), 6.89 (2H, d, J 8.7), 7.23–7.34 (13H, m). For 4a:
colorless prisms, mp 70–71 °C; [a]2D0 222.9 (c 1.2, CHCl3); dH (500 MHz,
CDCl3): 2.08 (3H, s), 2.19 (1H, dd, J 3.4, 14.1), 2.65 (1H, dd, J 3.7, 9.2),
2.86 (1H, dd, J 10.9, 14.1), 3.17 (1H, dd, J 9.2, 11.2), 3.43 (1H, ddd, J 3.5,
7.2, 10.8), 3.55 (1H, ddd, J 3.7, 7.2, 8.1), 5.17 (1H, t like, J2,3, J3,4 6.9), 6.65
(2H, d, J 8.7), 6.87 (2H, d, J 8.7), 7.24–7.75 (13H, m).
90%
(5 : 1)
I2,biphase,
room temp. 3 h
N
Pf
NHPf
OAc
6a
AcO
I
66%
(21 : 1)
I2,biphase,
room temp. 10 h
MOMO
MOMO
N
Pf
NHPf
7
7a
Me
O
Me
HO
I
O
92%e
(20 : 1)
I2,THF,
room temp. 10 h
HO
1 S. Horri, H. Fukase, T. Matsuo, Y. Kameda, N. Asano and K. Matsui,
J. Med. Chem., 1986, 29, 1038.
2 M. A. Spearman, J. C. Jamieson and J. A. Wright, Exp. Cell Res., 1987,
168, 116; K. Tsukamoto, A. Uno, S. Shimada and G. Imokaw, Clin.
Res., 1989, 37A, 722.
N
Pf
NHPf
8
Me
8a
Me
O
HO
I
O
88%f
(sole)
I2,THF,
room temp. 10 h
3 A. Karpas, G. W. J. Fleet, R. A. Dwek, S. Petursson, S. K. Mamgoong,
N. G. Ramsden, G. S. Jacob and T. W. Rademacher, Proc. Natl. Acad.
Sci. U.S.A., 1988, 85, 9229; G. W. J. Fleet, FEBS Lett., 1988, 237,
128.
4 G. Kinast and M. Schedel, Angew. Chem. Int. Ed. Engl., 1981, 20, 805;
A. Vasella and R. Voeffray, Helv. Chim. Acta, 1982, 65, 1134; H. Iida,
N. Yamazaki and C. Kibayashi, J. Org. Chem., 1987, 52, 3337; D.
Beaupere, B. Stasik, R. Uzan and G. Demailly, Carbohydr. Res., 1989,
191, 163; C. H. von der Osten, A. J. Sinskey, C. F. Barbas, R. L.
Pederson, Y.-F. Wang and C.-H. Wong, J. Am. Chem. Soc., 1989, 111,
3924; G. W. J. Fleet, N. M. Carpenter, S. Petursson and N. J. Ramsden,
Tetrahedron Lett., 1990, 31, 409; A. Straub, F. Effenberger and P.
Fischer, J. Org. Chem., 1990, 55, 3926.
5 D. P. Schumacher and S. S. Hall, J. Am. Chem. Soc., 1982, 104, 6076;
H. H. Baer and M. Zamkanei, J. Org. Chem., 1988, 53, 4786; R. Ballini,
E. Marcantoni and M. Petrini, J. Org. Chem., 1992, 57, 1316.
6 G. W. J. Fleet, S. J. Nicolas, P. W. Smith, S. V. Evans, L. E. Fellows and
R. J. Nash, Tetrahedron Lett., 1985, 26, 3127; N. Asano, K. Oseki and
K. Matsui, J. Med. Chem., 1994, 37, 3710.
7 H. Setoi, H. Takeno and M. Hashimoto, J. Org. Chem., 1985, 50, 3948;
R. B. B. III, J.-R. Choi, W. D. Montgomery and J. K. Cha, J. Am. Chem.
Soc., 1989, 111, 2580.
HO
N
Pf
NHPf
9
9a
a
b
All allylic alcohols are enantiomeric pure. The stereochemistry was
signed by 1H NMR and 2D NOE experiments. c Isolated yields. d 3 equiv.
e
of I2, aq. NaHCO3–THF–Et2O = 2:1:1. Based on 65% conversion of
starting material and 35% cleavage of the isopropylidene group of 8. f Based
on 80% conversion of starting material and 20% cleavage of the
isopropylidene group of 9.
Pf
Pf
I
I
H3 H5a
OAc
N
N
H4
H4
H5b
OAc
H2
H2
MeO
MeO
H3
NOE
NOE
NOE
3a
4a
Fig. 1 NOE interactions derived from NOESY experiments.
8 S. Nukui, M. Sodeoka, H. Sasaki and Shibasaki, J. Org. Chem., 1995,
60, 398.
using a strong electron-donating group, 9-phenylfluoren-9-yl
(Pf), on an amine moiety.
9 F. J. Sardina and H. Rapoport, Chem. Rev., 1996, 96, 1825.
10 W. D. Lubell and H. Rapoport, J. Am. Chem. Soc., 1987, 109, 236.
11 M. Gerspacher and H. Rapoport, J. Org. Chem., 1991. 56, 3700.
12 S. Robin and G. Rousseau, Tetrahedron, 1998, 54, 13681.
13 H. Takahata, T. Tamotsu and Y. Takao, J. Org. Chem., 1989, 54, 4812;
H. Takahata, K. Yamazaki, T. Takamatsu, T. Yamazaki and T. Momose,
J. Org. Chem., 1990, 55, 3947.
14 Y. Tamaru, S. Kawamura, K. Tanaka and Z. Yoshida, Tetrahedron Lett.,
1984, 25, 1063; Y. Tamaru, S.-i. Kawamura, T. Bando, K. Tanaka, M.
Hojo and Z.-i. Yoshida, J. Org. Chem., 1988, 53, 5491.
In conclusion, we found that optically active starting
materials 1 as chiral building blocks are converted easily to
pyrrolidine derivatives 2 via a diastereoselective iodoamidation.
These species should be valuable for the total synthesis of
polyhydroxylated aza sugars having a pyrrolidine ring and may
be suitable for substitution with various nucleophiles (NaN3,
amines, alcohols, thiols and Grignard compounds), giving novel
aza sugar derivatives. Thus, we are currently investigating the
preparation of all six diasteromers of anisomycin and other
3,4-dihydroxyprolinols.
Communication 8/09083A
252
Chem. Commun., 1999, 251–252