Pd(II)-Hydrotalcite-Catalyzed Oxidation of Alcohols
J . Org. Chem., Vol. 66, No. 20, 2001 6621
as a support.19 Thus, palladium(II) acetate-pyridine
complex was found to be easily supported by hydrotalcite
(Mg6Al2(OH)16CO3‚4H2O, basic clay mineral)20 to give a
heterogeneous palladium catalyst (abbreviated as Pd(II)-
hydrotalcite).19a,b For the purpose of constructing “greener”
oxidation system, we investigated the Pd(II)-hydrotal-
cite-catalyzed oxidation of alcohols using atmospheric
pressure of air instead of pure molecular oxygen. The
successful result of this catalytic reaction is described in
this paper.
Ta ble 1. P d -Ca ta lyzed Oxid a tion of Ben zyl Alcoh ol
u n d er 1 Atm Air a
Resu lts a n d Discu ssion
a
Op tim iza tion of Rea ction Con d ition s. First, the
oxidation of benzyl alcohol using previously reported
homogeneous and heterogeneous Pd(II)-catalytic sys-
tems18,19a,b was performed under atmospheric pressure
of air in balloon (Table 1). In Pd(OAc)2/pyridine or Pd-
(OAc)2/pyridine/MS3A system (homogeneous system),
benzaldehyde was obtained in good yield within 3 h
(Table 1, entries 1 and 2), and Pd(II)-hydrotalcite system
gave the best result (98% yield, entry 3). Furthermore,
the recovered catalyst could be used for further reaction
(90% yield).
Reaction conditions: Pd-catalyst (0.05 mmol), benzyl alcohol
(1.0 mmol), pyridine (0.2 mmol), toluene (10 mL), air (balloon, 1
atm) at 65 °C for 3 h. Conversion of benzyl alcohol. c MS3A (500
b
mg) was used.
Ta ble 2. Effect of Rea ction Tem p er a tu r e for
P d (II)-Hyd r ota lcite-Ca ta lyzed Oxid a tion of Alcoh ols
u n d er 1 Atm Air a
(8) (a) Yamada, T.; Mukaiyama, T. Chem. Lett. 1989, 519. (b)
Iwahama, T.; Sakaguchi, S.; Nishiyama, Y.; Ishii, Y. Tetrahedron Lett.
1995, 36, 6923. (c) Iwahama, T.; Yosino, Y.; Keitoku, T.; Sakaguchi,
S.; Ishii, Y. J . Org. Chem. 2000, 65, 6502.
(9) (a) Munakata, M.; Nishibayashi, S.; Sakamoto, H J . Chem. Soc.,
Chem. Commun. 1980, 219. (b) Bhaduri, S.; Sapre, N. Y. J . Chem. Soc.,
Dalton Trans. 1981, 2585. (c) Semmelhack, M. F.; Schmid, C. R.;
Corte´s, D. A.; Chou, C. S. J . Am. Chem. Soc. 1984, 106, 3374. (d)
Driscoll, J . J .; Kosman, D. J . J . Am. Chem. Soc. 1987, 109, 1765. (e)
Capdevielle, P.; Sparfel, D.; Baranne-Lafont, J .; Cuong, N. K.; Maumy,
M. J . Chem. Res., Synop. 1993, 10. (f) Liu, X.; Qiu, A.; Sawyer, D. T.
J . Am. Chem. Soc. 1993, 115, 3239. (g) Skibita, I. P.; Sakharov, A. M.
Catal. Today 1996, 27, 187. (h) Marko´, I. E.; Giles, P. R.; Tsukazaki,
M.; Brown, S. M.; Urch, C. J . Science 1996, 274, 2044. (i) Marko´, I. E.;
Tsukazaki, M.; Giles, P. R.; Brown, S. M.; Urch, C. J . Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2208. (j) Wang, Y.; DuBois, J . L.; Hedman, B.;
Hodgson, K. O.; Stack, T. D. P. Science, 1998, 279, 537. (k) Chaudhuri,
P.; Hess, M.; Flo¨rke, U.; Wieghardt, K. Angew. Chem., Int. Ed. 1998,
37, 2217. (l) Marko´, I. E.; Gautier, A.; Chelle´-Regnaut, I.; Giles, P. R.;
Tsukazaki, M.; Urch, C. J .; Brown, S. M. J . Org. Chem. 1998, 63, 7576.
(m) Marko´, I. E.; Giles, P. R.; Tsukazaki, M.; Chelle´-Regnaut, I.;
Gautier, A.; Brown, S. M.; Urch, C. J . J . Org. Chem. 1999, 64, 2433.
(n) Betzemeier, B.; Cavazzini, M.; Quici, S.; Knochel, P. Tetrahedron
Lett. 2000, 41, 4343.
(10) (a) Heyns, K.; Blazejewicz, L. Tetrahedron 1960, 9, 67. (b) J ia,
C.-G.; J ing, F.-Y.; Hu, W.-D.; Huang, M.-Y.; J iang, Y.-Y. J . Mol. Catal.
1994, 91, 139.
(11) Martin, J .; Martin, C.; Faraj, M.; Bre´geault, J .-M. Nouv. J .
Chim. 1984, 8, 141.
(12) Kirihara, M.; Ochiai, Y.; Takizawa, S.; Takahata, H.; Nemoto,
H. Chem. Commun. 1999, 1387.
(13) (a) Zhang, N.; Mann, C. M.; Shapley, P. A. J . Am. Chem. Soc.
1988, 110, 6591. (b) Coleman, K. S.; Coppe, M.; Thomas, C.; Osborn,
J . A. Tetrahedron Lett. 1999, 40, 3723. (c) Shapley, P. A.; Zhang, N.;
Allen, J . L.; Pool, D. H.; Liang, H.-C. J . Am. Chem. Soc. 2000, 122,
1079.
(14) Hatanaka, Y.; Imamoto T.; Yokoyama M. Tetrahedron Lett.
1983, 24, 2399.
(15) Choudary, B. M.; Kantam, M. L.; Rahman, A.; Reddy, C. V.;
Rao, K. K. Angew. Chem., Int. Ed. 2001, 40, 763.
(16) Aerobic oxidation using atmospheric pressure of air, for example
see: refs 6i, 6u, 7i, 7k, 13a, 13c, and 14.
(17) Aerobic oxidation using atmospheric pressure of oxygen or air,
for example see: refs 6g, 6k, 9f, 9h, 9i, 9k, 9l, 9m.
(18) (a) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Tetrahedron
Lett. 1998, 39, 6011. (b) Nishimura, T.; Onoue, T.; Ohe, K.; Uemura,
S. J . Org. Chem. 1999, 64, 6750. (c) Application of a similar catalytic
system for the reaction of tert-cyclobutanols: Nishimura, T.; Ohe, K.;
Uemura, S. J . Am. Chem. Soc. 1999, 121, 2645.
(19) (a) Nishimura, T.; Kakiuchi, N.; Inoue, M.; Uemura, S. Chem.
Commun. 2000, 1245. (b) Kakiuchi, N.; Nishimura, T.; Inoue, M.;
Uemura, S. Bull. Chem. Soc. J pn. 2001, 74, 165. Other Pd-recyclable
catalytic system using FBS (fluorous biphase system): (c) Nishimura,
T.; Maeda, Y.; Kakiuchi, N.; Uemura, S. J . Chem. Soc., Perkin Trans.
1 2000, 4301.
a
Reaction conditions: Pd(II)-hydrotalcite (0.05 mmol), alcohol
(1.0 mmol), pyridine (0.2 mmol), toluene (10 mL), air (balloon, 1
atm). Conversion of alcohol. c The color of Pd(II)-hydrotalcite
b
d
turned black. Isolated yield.
Table 2 shows the result of aerobic oxidation of benzyl
alcohol and dodecan-1-ol using Pd(II)-hydrotalcite as a
catalyst. At 80 °C or 70 °C, benzyl alcohol was converted
into benzaldehyde in quantitative yield. In these reac-
tions, however, the color of the catalyst turned from
white-yellow to black, showing the formation of an
inactive Pd-black by the reduction of Pd(II) species. On
the other hand, benzaldehyde was obtained in 98% yield
without any formation of such Pd-black at 65 °C. In the
oxidation of dodecan-1-ol at 80 °C, Pd-black was formed
during the reaction resulting in the slow reaction (70%
yield of dodecanal, after 13 h), while dodecanal was
obtained in 91% yield at 65 °C for 10 h.
Next, the effect of the amount of pyridine on the
oxidation of benzyl alcohol was investigated. As shown
in Figure 1, when pyridine was not added, oxidation did
not proceed efficiently; at least 4 mol equiv of pyridine
to Pd(II) was needed to maintain the catalytic activity.
Concentration of the substrate was also an important
factor. When the oxidation of benzyl alcohol was per-
formed using toluene (0.2 M), the color of Pd(II)-
hydrotalcite turned black and the yield of benzaldehyde
decreased (77%). Therefore, we decided the optimum
reaction condition to be the use of alcohol, Pd(II)-
hydrotalcite (5 mol %), pyridine (20 mol %) in toluene
(0.1 M) under 1 atm air (in balloon) at 65 °C.
Oxid a tion of Ben zylic a n d Alip h a tic Alcoh ols. We
performed the oxidation of various benzylic and aliphatic
alcohols under the above-described optimum condition,
the results of which are listed in Table 3. Primary
benzylic alcohols were readily oxidized to the correspond-
(20) Cavani, F.; Trifiro`, F.; Vaccari, A. Catal. Today 1991, 11, 173.