Journal of the American Chemical Society
Page 4 of 5
(6) Fodor, G.; Romeike, A.; Janzeó, G.; Koczor, I. Tetrahedron Lett.
1959, 7, 19–23.
served correlation. Alternatively, a discrete radical interme-
1
2
3
4
5
6
7
8
diate susceptible to rebound may only form from substrates
with staggered (31 & 34) rather than eclipsed alignments (3
& 28). In the latter case, cyclization may proceed in concert
with H-atom abstraction resulting in a one-step-two-electron
reduction of the Fe(IV)=O complex. While enzymatic
Fe(IV)=O complexes are typically modeled as stepwise one-
electron acceptors, Fe(IV)=O complexes have been impli-
cated in two-electron processes,34,35 and a similar chemistry
may be at work in the catalytic cycle of H6H.
(7) Hashimoto, T.; Yamada, Y. Plant Physiol. 1986, 81, 619−625.
(8) Hashimoto, T.; Yamada, Y. Eur. J. Biochem. 1987, 164, 277–285.
(9) Hashimoto, T.; Kohno, J.; Yamada, Y. Plant Physiol. 1987, 84,
144–147.
(10) Hashimoto, T.; Kohno, J.; Yamada, Y. Phytochemistry 1989, 28,
1077–1082.
(11) Matsuda, J.; Okabe, S.; Hashimoto, T.; Yamada, Y. J. Biol. Chem.
1991, 266, 9460−9464.
(12) Hashimoto, T.; Matsuda, J.; Yamada, Y. FEBS Lett. 1993, 329,
35–39.
9
H6H represents an excellent system for studying the par-
titioning of radical-mediated catalytic cycles among differ-
ent reaction paths. Herein, evidence is provided that the ox-
idative cyclization catalyzed by H6H does not involve re-
bound of the hydroxyl group following H-atom abstraction.
Furthermore, cyclization versus rebound appears to require
that an exo-OH not only be adjacent to the site of H-atom
abstraction but also have the correct syn-periplanar configu-
ration. Future investigation of these properties and the chem-
istry underlying them will provide new insights into the me-
chanics of nonheme iron biocatalysts.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13) Li, J.; van Belkum, M. J.; Vederas, J. C. Bioorg. Med. Chem. 2012,
20, 4356−4363.
(14) Elson, S. W.; Baggaley, K. H; Gillett, J.; Holland, S.; Nicholson,
N. H.; Sime, J. T.; Woroniecki, S. R. J. Chem. Soc., Chem. Commun.
1987, 1736–1738.
(15) Pan, J.; Bhardwaj, M.; Faulkner, J. R.; Nagabhyru, P.; Charlton,
N. D.; Higashi, R. M.; Miller, A.-F.; Young, C. A.; Grossman, R. B.;
Schardl, C. L. Phytochemistry 2014, 98, 60−68.
(16) Pan, J.; Bhardwaj, M.; Zhang, B.; Chang, W.-c.; Schardl, C. L.;
Krebs, C.; Grossman, R. B.; Bollinger, J. M., Jr. Biochemistry 2018,
57, 2074–2083.
(17) Krol, W. J.; Basak, A.; Salowe, S. P.; Townsend, C. A. J. Am.
Chem. Soc. 1989, 111, 7625–7627.
(18) Liu, P.; Murakami, K.; Seki, T.; He, X.; Yeung, S.- M.; Kuzuyama,
T.; Seto, H.; Liu, H.-w. J. Am. Chem. Soc. 2001, 123, 4619–4620.
(19) Wang, C.; Chang, W.-c.; Guo, Y.; Huang, H.; Peck, S. C.; Pande-
lia, M. E.; Lin, G.-m.; Liu, H.-w.; Krebs, C.; Bollinger, J. M., Jr. Sci-
ence 2013, 342, 991−995.
ASSOCIATED CONTENT
The Supporting Information is available free of charge on
the ACS Publications website at DOI: XXX. Details regard-
ing H6H assays along with HPLC protocols, chemical syn-
thesis of compounds and computational methods and results.
(20) Higgins, L. J.; Yan, F.; Liu, P; Liu, H.-w.; Drennan, C. L. Nature
2005, 437, 838−844.
(21) Chang, W.-c.; Dey, M.; Liu, P.; Mansoorabadi, S. O.; Moon, S.-
J.; Zhao, B. K.; Drennan, C. L.; Liu, H.-w. Nature 2013, 496, 114−118.
(22) Yun, D.; Dey, M.; Higgins, L. J.; Yan, F.; Liu, H.-w.; Drennan, C.
L. J. Am. Chem. Soc. 2011, 133, 11262–11269.
(23) Yan, F.; Moon, S.-J.; Liu, P.; Zhao, Z.; Lipscomb, J. D.; Liu, A.;
Liu, H.-w. Biochemistry 2007, 46, 12628–12638.
(24) Grundt, P.; Kopajtic, T. A.; Katz, J. L.; Newman, A. H. Bioorg.
Med. Chem. Lett. 2004, 14, 3295–3298.
(25) Ishimaru, K.; Shimomura, K. Phytochemistry 1989, 28, 3507–
3509.
(26) Muñoz, M. A.; Muñoz, O.; Joseph-Nathan, P. J. Nat. Prod. 2006,
69, 1335–1340.
(27) Chang, C.-Y., Lyu, S.-Y., Liu, Y.-C., Hsu, N.-S., Wu, C.-C., Tang,
C.-F., Lin, K.-H., Ho, J.-Y., Wu, C.-J., Tsai, M.-D., and Li, T.-L. An-
gew. Chem., Int. Ed. 2014, 53, 1943−1948.
(28) Qi, J.; Wan, D.; Ma, H.; Liu, Y.; Gong, R.; Qu, X.; Sun, Y.; Deng,
Z.; Chen, W. Cell. Chem. Biol. 2016, 23, 935–944.
(29) Thomas, S. G.; Phillips, A. L.; Hedden, P. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 4698–4703.
(30) Chung, H. S.; Raetz, C. R. H. Proc. Natl. Acad. Sci. U.S.A. 2010,
108, 510–515.
(31) Patteson, J. B.; Cai, W.; Johnson, R. A.; Santa Maria, K. C.; Li, B.
Biochemistry 2018, 57, 61–65.
AUTHOR INFORMATION
Corresponding Author
*h.w.liu@mail.utexas.edu
ORCID
Hung-wen Liu: 0000-0001-8953-4794
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We thank Dr. Takashi Hashimoto at Nara Institute of Science
and Technology for generously providing the clone of h6h.
This work was supported by grants from the National Insti-
tutes of Health (GM113106 and GM040541) and the Welch
Foundation (F-1511).
REFERENCES
(1) Hausinger, R. P. Biochemical diversity of 2-oxoglutarate dependent
oxygenases. In 2-Oxoglutarate-dependent oxygenases (Schofield, C. J.,
and Hausinger, R. P., Eds.) The Royal Society of Chemistry, Cam-
bridge, U.K. 2015, 1−58,
(32) Meng, S.; Han, W.; Zhao, J.; Jian, X.-H.; Pan, H.-X.; Tang, G.-L.
Angew. Chem., Int. Ed. 2018, 57, 719–723.
(33) Bai, J.; Yan, D.; Zhang, T.; Guo, Y.; Liu, Y.; Zou, Y.; Tang, M.;
Liu, B.; Wu, Q.; Yu, S.; Tang, Y.; Hu, Y. Angew. Chem., Int. Ed. 2017,
56, 4782–478.ꢀ
(34) Pestovsky, O.; Bakac, A. J. Am. Chem. Soc. 2004, 126, 13757–
13764.
(35) Oh, N. Y.; Suh, Y.; Park, M. J.; Seo, M. S.; Kim, J.; Nam, W.
Angew. Chem. 2005, 117, 4307–4311.
(2) Kovaleva, E. G.; Lipscomb, J. D. Nat. Chem. Biol. 2008, 4, 186–
193.
(3) Costas, M.; Mehn, M. P.; Jensen, M. P.; Que, L., Jr. Chem. Rev.
2004, 104, 939–986.
(4) Krebs, C.; Fujimori, D. G.; Walsh, C. T.; Bollinger, M. J., Jr. Acc.
Chem. Res. 2007, 40, 484–492.
(5) Klinkenberg, I.; Blokland, A. Neurosci. Biobehav. Rev. 2010, 34,
1307−1350.
ACS Paragon Plus Environment