10.1002/anie.201702953
Angewandte Chemie International Edition
[16] For advanced micro(flow) reaction set-up, see: J. Schachtner, P.
Bayer, A. Jacobi von Wangelin, Beilstein J. Org. Chem. 2016, 12,
1798.
[17] For diradical stabilization on alkyne system, see: R. K. Mohamed,
S. Mondal, K. Jorner, T. F. Delgado, V. V. Lobodin, H. Ottosson,
I. V. Alabugin, J. Am. Chem. Soc. 2015, 137, 15441.
[18] For the photochemical oxidation of alkynes by molecular oxygen
see: H-T- Qin, X. Xu, F. Liu, ChemCatChem 2017, 9, 1409.
[19] For a discussion on 4-exo-dig vs 5-endo-dig radical cyclization,
see: a) J. E. Baldwin, J. C. S. Chem. Comm. 1976, 734; b) I. V.
Alabugin, K. Gilmore, M. Manoharan, J. Am. Chem. Soc. 2011,
133, 12608; c) K. Gilmore, I. V. Alabugin, Chem. Rev. 2011, 111,
6513.
[20] For oxygen anion radical generation by photocatalyst, see: a) S.
Zhu, A. Das, L. Bui, H. Zhou, D. P. Curran, M. Rueping, J. Am.
Chem. Soc. 2013, 135, 1823; b) S. K. Han, T.-M. Hwang, Y.
Yoon, J.-W. Kang, Chemosphere 2011, 84, 1095; c) D. C. Fabry,
M. Rueping, Acc. Chem. Res. 2016, 49, 1969; d) Y. Cheng, J.
Yang, Y. Qu, P. Li, Org. Lett. 2012, 14, 98.
In summary, we have shown for the first time the
generation of α-ketoradicals from vinyl bromides and molecular
oxygen by energy transfer process operated by an Ir-F photocatalyst.
The resulting vinyl radical II, being formed from a diradical
intermediate upon bromine extrusion, could be engaged in a
productive reaction cascade with up to three molecules of molecular
oxygen, leading to complex molecule architectures in a single
photochemical step under the mild reaction conditions. The newly
obtained tetracyclic compounds 3 could serve as valuable building
blocks in medicinal chemistry. Such compounds having a hetero-
atom impregnated into the [6-5-6]-ABC skeleton were previously
advertised as Taiwaniaquinoids related scaffolds by Panda et al,[22]
which are closely related to the naturally occurring family of Tai-
waniaquinoids possessing a common [6-5-6]-abeo-abietane carbon
architecture with broad biological activities.[23]
Received: ((will be filled in by the editorial staff))
Published online on ((will be filled in by the editorial staff))
Keywords: Photocascade, dioxygen activation, α-ketoradicals,
indenones, Taiwaniaquinoids
[21] For
photochemical
6π-electrocyclization,
see:
a)
O.
Anamimoghadam, M. D. Symes, C. Busche, D.-L. Long, S. T.
Caldwell, C. Flors, S. Nonell, L. Cronin, G. Bucher, Org. Lett.
2013, 15, 2970; b) A. C. Hernandez-Perez, S. K. Collins, Acc.
Chem. Res. 2016, 49, 1557; c) S. Parisien-Collette, A. C.
Hernandez-Perez, S. K. Collins, Org. Lett. 2016, 18, 4994; d) O.
Kikuchi, Tet. Lett. 1981, 22, 859.
References:
[1] For recent leading reviews and perspectives on photocatalysis, see:
a) D. Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016, 116, 9850;
b) O. Reiser, Acc. Chem. Res. 2016, 49, 1990; c) N. A. Romero, D.
A. Nicewicz, Chem. Rev. 2016, 116, 10075; d) M. H. Shaw, J.
Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898; e) T.
P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527.
[22] For Taiwaniaquinoid related scaffolds, see: a) R. Singh, G. Panda,
Org. Biomol. Chem. 2011, 9, 4782; b) R. Singh, M. K. Parai, G.
Panda, Org. Biomol. Chem. 2009, 7, 1858.
[23] For Taiwaniaquinoids, see: a) G. Majetich, J. M. Shimkus, J. Nat.
Prod. 2010, 73, 284; b) G. Liang, Y. Xu, I. B. Seiple, D. Trauner,
J. Am. Chem. Soc. 2006, 128, 11022.
[2] S. Paria, O. Reiser, Adv. Synth. Catal. 2014, 356, 557.
[3] S. Paria, V. Kais, O. Reiser, Adv. Synth. Catal. 2014, 356, 2853.
[4] J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam, C. R. J.
Stephenson, Nat. Chem. 2012, 4, 854.
[5] For redox potentials and excited state lifetimes of the
photocatalysts, see: a) H. G. Roth, N. A. Romero, D. A. Nicewicz,
Synlett 2016, 27, 714; b) C. K. Prier, D. A. Rankic, D. W. C.
MacMillan, Chem. Rev. 2013, 113, 5322.
[6] S. K. Pagire, O. Reiser, Green Chem. 2017, 19, 1721.
[7] T. Maji, A. Karmakar, O. Reiser, J. Org. Chem. 2011, 76, 736.
[8] For
the
significance
of
[Ir{dF(CF3)ppy}2(dtb-bpy)]PF6
photocatalyst in energy transfer process, see: a) Z. Lu, T. P. Yoon,
Angew. Chem. Int. Ed. 2012, 51, 10329; For selected energy
transfer examples, see: b) N. J. Turro, J. Chem. Educ. 1966, 43,
13; c) W. L. Dilling, Chem. Rev. 1969, 69, 845; d) M. Wrighton, J.
Markham, J. Phys. Chem. 1973, 77, 3042; e) E. Brachet, T.
Ghosh, I. Ghosh, B. König, Chem. Sci. 2015, 6, 987; f) S. K. Han,
T.-M. Hwang, Y. Yoon, J.-W. Kang, Chemosphere 2011, 84,
1095.
[9] For the synthesis and photophysical properties of
[Ir{dF(CF3)ppy}2(dtb-bpy)]PF6 photocatalyst, see: M. S. Lowry, J.
I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras,
S. Bernhard, Chem. Mater. 2005, 17, 5712.
[10] For E/Z-isomerization of olefins via diradical formation, see: J. B.
Metternich, R. Gilmour, J. Am. Chem. Soc. 2015, 137, 11254.
[11] J. D. Slinker, A. A. Gorodetsky, M. S. Lowry, J. Wang, S. Parker,
R. Rohl, S. Bernhard, G. G. Malliaras, J. Am. Chem. Soc. 2004,
126, 2763.
[12] J. Sun, W. Wu, J. Zhao, Chem. Eur. J. 2012, 18, 8100.
[13] F. Teplý, Collect. Czech. Chem. Commun. 2011, 76, 859.
[14] D. P. Hari, B. Konig, Chem. Comm. 2014, 50, 6688.
[15] For Cu-photocatalysis, see: a) J. M. Kern, J. P. Sauvage, J. Chem.
Soc. Chem. Commun. 1987, 546; b) S. Paria, O. Reiser,
ChemCatChem 2014, 6, 2477; c) S. K. Pagire, S. Paria, O. Reiser,
Org. Lett. 2016, 18, 2106; d) M. Pirtsch, S. Paria, T. Matsuno, H.
Isobe, O. Reiser, Chem. Eur. J. 2012, 18, 7336.
4
This article is protected by copyright. All rights reserved.