D. M. Armistead, F. E. Wincott, H. G. Selnick and R. Hungate,
J. Am. Chem. Soc., 1989, 111, 2967.
4 S. J. Danishefsky and M. T. Bilodeau, Angew. Chem., 1996, 108,
1482; Angew. Chem., Int. Ed. Engl., 1996, 35, 1380.
6.0, 2-H), 4.88 and 4.67 (2H, 2 d, J 12.0, CH2Ph), 4.06 (1H, dq,
J 0.8 and 6.6, 5-H), 3.50 (1H, br s, 4-H), 1.30 (3H, d, J 6.6,
6-H3); δC(100 MHz; CDCl3) 165.8 (s, OBz), 148.8 (d, 1-C),
137.6 (s, Ph), 133.2–127.9 (d, Ph), 96.5 (d, 2-C), 72.0 (t, CH2Ph),
74.6 and 70.3 (d, 3- and 4-C), 64.1 (d, 5-C) and 16.3 (q, 6-C)
(Found: C, 73.9; H, 6.1. C20H20O4 requires C, 74.06; H, 6.21%).
For further elucidation of the configuration at C-3 in product
43, the hydroxy group in compound 30a (0.55 mmol) was
benzoylated under standard conditions40 to give, after column
chromatography (petroleum spirit–ethyl acetate 8:1), 1,5-
anhydro-3-O-benzoyl-4-O-benzyl-2,6-dideoxy--lyxo-hex-1-
enitol 42 (53 mg, 30%) as an oil; [α]D20 ϩ109 (c 1.22, CHCl3);
δH(400 MHz; CDCl3) 7.6–7.2 (10H, m, Ph), 6.47 (1H, dd, J 6.2
and 1.2, 1-H), 5.78 (1H, dddd, J 4.6, 3.2, 1.6 and 1.0, 3-H), 4.85
(1H, ddd, J 6.2, 3.2, 0.8, 2-H), 4.81 and 4.58 (2H, 2 d, J 12.4,
CH2Ph), 4.25 (1H, ddq, J 6.6, 2.8 and 1.0, 5-H), 3.96 (1H, ddd,
J 4.6, 2.8 and 0.8, 4-H) and 1.37 (3H, d, J 6.6, 6-H); δC(100
MHz; CDCl3) 166.5 (s, OBz), 146.0 (d, 1-C), 137.9 (Ph), 133.4–
128.0 (d, Ph), 98.0 (d, 2-C), 73.5 (t, CH2Ph), 72.8 and 72.3 (d,
3- and 4-C), 66.4 (d, 5-C) and 15.6 (q, 6-C) (Found: C, 73.8; H,
6.3. C20H20O4 requires C, 74.06; H, 6.21%).
5 A. Kirschning, A. Bechthold and J. Rohr, Top. Curr. Chem., 1997,
188, 1; K. Toshima and K. Tatsuta, Chem. Rev., 1993, 93, 1503.
6 S. Bouhroum and P. J. A. Vottero, Tetrahedron Lett., 1990, 31, 7441;
H. B. Mereyala and V. R. Kulkarni, Carbohydr. Res., 1989, 187, 154.
7 W. Klaffke, D. Springer and J. Thiem, Carbohydr. Res., 1991, 216,
475; J. Thiem and W. Klaffke, J. Org. Chem., 1989, 54, 2006.
8 S. Köpper, I. Lundt, C. Pedersen and J. Thiem, Liebigs Ann. Chem.,
1987, 531.
9 D. Horton, W. Priebe and O. Varela, Carbohydr. Res., 1985, 144, 325.
10 T. Henkel, J. Rohr, J. Beale and L. Schwenen, J. Antibiot. (Tokyo),
1990, 43, 492; J. S. Weber, C. Zolke, J. Rohr and J. Beale, J. Org.
Chem., 1994, 59, 401.
11 Recently, the synthesis of the hexasaccharide fragment has been
accomplished by: Y. Guo and G. A. Sulikowski, J. Am. Chem. Soc.,
1998, 120, 1392.
12 A. Kirschning, J. Org. Chem., 1995, 60, 1228.
13 A. Kirschning, Eur. J. Org. Chem., 1998, 2276.
14 J. Harders, A. Garming, A. Jung, V. Kaiser, H. Monenschein,
M. Ries, L. Rose, K.-U. Schöning, T. Weber and A. Kirschning,
Liebigs Ann./Recueil., 1997, 2125; A. Kirschning, Liebigs Ann.,
1995, 2053.
15 A. Kirschning and J. Harders, Tetrahedron, 1997, 53, 7867; Synlett,
1996, 772; R. Benhaddou, S. Czernecki and G. Ville, J. Org. Chem.,
1992, 57, 4612; T. E. Goodwin, N. M. Rothman, K. L. Salazar and
L. S. Shannon, J. Org. Chem., 1992, 57, 2469; M. Takiya, M. Ishii,
K. Shibata, Y. Mikami and O. Mitsunobu, Chem. Lett., 1992, 1917;
T. Kaufmann, W. Klaffke, C. Philip and J. Thiem, Carbohydr. Res.,
1990, 207, 33; V. Bellosta and S. Czernecki, Carbohydr. Res., 1987,
171, 279.
1,5-Anhydro-3-azido-4-O-benzyl-2,3,6-trideoxy-L-xylo-hex-1-
enitol 44
To a solution of alcohol 30a (100 mg, 0.45 mmol) and LiN3
(151 mg, 2.97 mmol) in dry DMF (3 ml) at 45 ЊC was added
CBr4 (280 mg, 0.86 mmol) in one portion. After a while, a yellow
solution resulted and PPh3 (225 mg, 0.86 mmol) was added in
small portions with external cooling. After the addition was
complete, the orange solution was stirred for 12 h at rt, and
hydrolysed in an ice-cold mixture of NH4Claq–CH2Cl2. Extrac-
tion of the aqueous phase with CH2Cl2 (3 ×) followed by wash-
ing of the combined organic extracts with brine, drying
(MgSO4), and concentration in vacuo gave a brown oil (930 mg).
Purification by flash chromatography on silica gel (petroleum
spirit–ethyl acetate 20:1) afforded the title compound 44 (17 mg,
15%) as an oil, νmax/cmϪ1 2080; δH(400 MHz; C6D6) 7.20–7.0
(5H, m, Ph), 6.36 (1H, d, J 6.4, 1-H), 4.44 (1H, ddd, J 6.4, 5.2
and 1.4, 2-H), 4.23 and 4.04 (2H, 2 d, J 12.0, CH2Ph), 3.78 (1H,
dq, J 6.4 and 2.0, 5-H), 3.54 (1H, dd, J 5.2 and 2.0, 3-H), 3.09
(1H, ddd, J 2.0, 2.0 and 1.4, 4-H), 1.11 (3H, d, J 6.4, 6-H3);
δC(100 MHz; CDCl3) 148.2 (d, 1-C), 133.2 (s, Ph), 128.0–127.8
(d, Ph), 94.3 (d, 2-C), 76.5 and 70.2 (d, 4- and 5-C), 72.3 (t,
CH2Ph), 53.4 (d, 3-C) and 15.9 (q, 6-C) (Found: C, 63.8; H, 6.0.
C13H15N3O2 requires C, 63.66; H, 6.16; N, 17.13%).
16 A. Kirschning, J. Prakt. Chem., 1998, 340, 184.
17 G. F. Koser and R. H. Wettach, J. Org. Chem., 1980, 45, 4988.
18 V. V. Zhdankin, R. Tykwinski, B. L. Williamson, P. J. Stang and
N. S. Zefirov, Tetrahedron Lett., 1991, 32, 733.
19 H. Saltzman and J. G. Sharefkin, Org. Synth., 1963, 43, 60.
20 Due to the two-phase character of the reaction, severe explosions
may occur when PhI(N3)2 is generated from iodosobenzene (PhIO)n.
In our experience, this problem can be avoided when (diacetoxy-
iodo)benzene is employed instead.
21 M. Perez and J.-M. Beau, Tetrahedron Lett., 1989, 30, 75.
22 A. Kirschning, S. Domann, G. Dräger and L. Rose, Synlett, 1995,
767; P. Magnus and M. B. Roe, Tetrahedron Lett., 1996, 37, 303.
23 J. Ehrenfreund and E. Zbiral, Liebigs Ann. Chem., 1973, 290;
Tetrahedron, 1972, 28, 1697.
24 P. Magnus, J. Lacour, P. A. Evans, M. B. Roe and C. Hulme, J. Am.
Chem. Soc., 1996, 118, 3406; P. Magnus and J. Lacour, J. Am. Chem.
Soc., 1992, 114, 3993; 767.
25 J.-L. Luche, J. Am. Chem. Soc., 1978, 100, 2226.
26 For other examples of the selective reduction of 2,3-dihydro-4H-
pyran-4-ones see: K. J. Hale and S. Manaviazar, Tetrahedron
Lett., 1994, 35, 8873; T. Nakata, H. Matsukura, D. Jian and
H. Nagashima, Tetrahedron Lett., 1994, 35, 8229; A. Golebiowski
and J. Jurczak, Tetrahedron, 1991, 47, 1045; S. Danishefsky, S.
Kobayashi and J. F. Kerwin, Jr., J. Org. Chem., 1982, 47, 1883.
27 The Luche reduction did also not work with other 4-O-silylated
glycals such as compounds 11 or 14. Herscovici et al. applied the
Luche reduction to similar enones, quoting much higher selectivities
for threo-configured pyranones. However, we were unable to repeat
their results: J. Herscovici, R. Montserret and K. Astonakis,
Carbohydr. Res., 1988, 176, 219. When the substituent at C-4
(carbohydrate numbering) is missing, the Luche reduction is
governed by the substituent at C-5, exclusively, leading to the
corresponding threo-products: D. Meng, P. Bertinato, A. Balog,
D.-S. Su, T. Kamenecka, E. J. Sorensen and S. J. Danishefsky, J. Am.
Chem. Soc., 1997, 119, 10073 and ref. 26.
Acknowledgements
The authors are grateful to the Deutsche Forschungsgemein-
schaft (grant Ki 379/4-1) and the Fonds der Chemischen
Industrie for financial support. We also thank S. Domann,
A. Eigenbrot, J. Harders and J. Namyslo, Clausthal, for provid-
ing various starting materials.
References
1 Y. Leblanc, B. J. Fitzsimmons, J. P. Springer and J. Rokach, J. Am.
Chem. Soc., 1989, 111, 2995; R. Grondin, Y. Leblanc and
K. Hoogsteen, Tetrahedron Lett., 1991, 32, 5021; Z. Kaluza,
W. Abramski, C. Bel’zecki, J. Grodner, D. Mostowicz, R. Urbanski
and M. Chmielewski, Synlett, 1994, 539.
2 M. H. D. Postema, C-Glycoside Synthesis, CRC Press, Boca Raton,
Ann Arbor, London, Tokyo, 1995; D. E. Levy and C. Tang, The
Chemistry of C-Glycosides, Tetrahedron Organic Chemistry Series
Volume 13, Pergamon Press, Oxford, New York, Tokyo, 1995.
3 (a) R. E. Ireland, R. C. Anderson, R. Badoud, B. J. Fitzsimmons,
D. J. McGarvey, S. Thaisrivongs and C. S. Wilcox, J. Am. Chem.
Soc., 1983, 105, 1988; (b) R. K. Boeckman, Jr., A. B. Charette,
T. Asberom and B. H. Johnston, J. Am. Chem. Soc., 1991, 113, 5337;
(c) S.-H. Chen, R. F. Horvath, J. Joglar, M. J. Fisher and S. J.
Danishefsky, J. Org. Chem., 1991, 56, 5834; (d) S. J. Danishefsky,
28 For other examples of lipase-catalysed (de)acylations of glycals see:
D. B. Berkowitz, S. J. Danishefsky and G. K. Schulte, J. Am. Chem.
Soc., 1992, 114, 4518; D. B. Berkowitz and S. J. Danishefsky,
Tetrahedron Lett., 1991, 32, 5497; E. W. Holla, Angew. Chem., 1989,
101, 222; Angew. Chem., Int. Ed. Engl., 1989, 28, 220; J. Carbohydr.
Chem., 1990, 9, 113.
29 D. Horton, W. Priebe and O. Varela, Carbohydr. Res., 1985, 144, 317.
30 J. Rohr, S.-E. Wohlert, C. Oelkers, A. Kirschning and M. Ries,
Chem. Commun., 1997, 973.
31 O. Mitsunobu, Synthesis, 1981, 1.
32 R. D. Guthrie, R. W. Irvine, B. E. Davison, K. Henrick and
J. Tritter, J. Chem. Soc., Perkin Trans. 2, 1981, 468.
33 A. Sobti and G. A. Sulikowski, Tetrahedron Lett., 1994, 35, 3661.
34 N. G. Ramesh and K. K. Balasubramanian, Tetrahedron, 1995, 51,
J. Chem. Soc., Perkin Trans. 1, 1999, 519–528
527