mixture on the H-1B anomeric center. This mixture could not be
separated at this stage, so the ester groups were removed with
0.5 M sodium methoxide solution in methanol (75%) and the
mixture of triols was chromatographed to give pure 23.
Hydrogenolysis of the benzyl groups [H2, Pd(OH)2/C, MeOH]
gave the target compound 127 in 65% yield.
In conclusion, orthoester derivatives of arabinose and
mannose were used for the efficient synthesis of 1, the
tetrasaccharidic cap of the lipoarabinomannan of M. tuberculo-
sis, via a convergent route using minimal protecting groups
manipulation and selective anomeric activation. Both a- and b-
arabinofuranosides were obtained with complete stereocontrol
from 3-O-benzyl-1,2,5-orthoesters of -arabinose. Extension of
D
this methodology to the elaboration of other complex poly-
arabinofuranosidic structures and synthesis of neoantigens from
1 for biological evaluation are currently under way.
Scheme 2 Reagents and conditions: i, 1.1 equiv. 8, 1 equiv. 13, 1.5 equiv.
DDQ, MS 4 Å, CH2Cl2, 0 °C to room temp., 2.5 h, 84%; ii, 1.2 equiv. IDCP,
MS 4 Å, CH2Cl2, room temp., 1.5 h, 73%; iii, Ac2O, pyridine, room temp.,
then 1.2 equiv. Bun4NF, THF, room temp., 0.5 h, 75%, 2 steps; iv, 1.5 equiv.
PhSeH, MS 4 Å, cat. HgBr2, MeCN, room temp., 2 h, 75% ; v, 5.5 equiv.
EtSH, MS 4 Å, cat. HgBr2, MeCN, room temp., 48 h, 79% ; vi, MeONa,
MeOH, room temp., 16 h, 91% ; vii, 1 equiv. 18, 1.1 equiv. 20, 1.1 equiv.
NIS, 0.1 equiv. TMSOTf, MS 4 Å, CH2Cl2, 218 °C to room temp.,
71%.
Notes and references
1 D. Chatterjee and K. H. Khoo, Glycobiology, 1998, 8, 113.
2 T. I. A. Roach, C. H. Barton, D. Chatterjee and J. M. Blackwell,
J. Immunol., 1993, 150, 1886.
3 D. Chatterjee, K. Lowell, B. Rivoire, M. R. McNeil and P. J. Brennan,
J. Biol. Chem., 1992, 267, 6234.
4 S. Prinzis, D. Chatterjee and P. J. Brennan, J. Gen. Microbiol., 1993,
139, 2649.
5 M. Gilleron, N. Himoudi, O. Adam, P. Constant, A. Venisse, M. Rivière
and G. Puzo, J. Biol. Chem., 1997, 272, 117.
6 A. Vercellone, J. Nigou and G. Puzo, Front. Biosci., 1998, 3, e149.
7 P. A. Sieling, D. Chatterjee, S. A. Porcelli, T. I. Prigozy, R. J.
Mazzaccaro, Y. Soriano, B. R. Bloom, M. B. Brenner, M. Kronenberg,
P. J. Brennan and R. L. Modlin, Science, 1995, 269, 227.
8 A. Venisse, J. J. Fournié and G. Puzo, Eur. J. Biochem., 1995, 231,
440.
9 R. U. Lemieux, D. R. Bundle and D. A. Baker, J. Am. Chem. Soc., 1975,
97, 4076.
10 N. K. Kochetkov, A. Y. Khorlin, A. F. Bochkov and I. G. Yazlovetskii,
Izv. Akad. Nauk. SSSR, Ser. Khim., 1966, 1966; A. F. Bochkov, Y. V.
Voznyi, V. N. Chernetskii, V. M. Dashunin and A. V. Rodionov, Izv.
Akad. Nauk. SSSR, Ser. Khim., 1975, 348.
11 N. K. Kochetkov, A. F. Bochkov and I. G. Yazlovetsky, Carbohydr.
Res., 1969, 9, 49.
12 Other catalysts gave mixtures of isomeric 2-O- and 5-O-benzoylated
arabinofuranosides. For a related orthoester opening, see ref. 13.
13 F. Nakatsuko, H. Kamitakahara and M. Hori, J. Am. Chem. Soc., 1996,
118, 1677.
14 Y. Ito and T. Ogawa, Angew. Chem., Int. Ed. Engl., 1994, 33, 1765; A.
Dan, Y. Ito and T. Ogawa, J. Org. Chem., 1995, 60, 4680.
15 Y. Gül Salman, Ö. Makinanakan and L. Yüceer, Tetrahedron Lett.,
1994, 35, 9233.
16 N. Kornblum, R. A. Smiley, R. K. Blackwood and D. C. Iffland, J. Am.
Chem. Soc., 1955, 77, 6229.
17 B. S. Sproat, B. Beijer and A. Iribarren, Nucleic Acids Res., 1990, 18,
41; C. H. Gotfredsen, J. P. Jacobsen and J. Wengel, Tetrahedron Lett.,
1994, 35, 6941.
18 For other approaches to the synthesis of b-arabinofuranosides, see: H. B.
Mereyala, S. Hotha and M. K. Gurjar, Chem. Commun., 1998, 685; J.
Désiré and J. Prandi, Carbohydr. Res., 1999, 317, 110.
19 P. Smid, G. A. de Ruiter, G. A. Van der Marel, F. M. Rombouts and J. H.
Van Boom, J. Carbohydr. Chem., 1991, 10, 833.
5,6-dicyano-1,4-benzoquinone in CH2Cl2 gave the mixed acetal
14 in 84% isolated yield after chromatography (Scheme 2).
Intramolecular glycosylation was promoted with 1.2 equiv. of
iodonium dicollidine perchlorate (IDCP)19 in CH2Cl2 and gave
a rewarding 73% yield of the b-linked disaccharide 15 as the
only isolated product. The b-(d) configuration of the new
1
anomeric center was firmly established from the H and 13C
NMR data (dH-1A 5.15, JH-1A,H-2A 4.5 Hz; dC-1A 101.48).20
Acetylation (acetic anhydride, pyridine) and silyl ether depro-
tection with tetrabutylammonium fluoride in tetrahydrofuran
gave the diarabinofuranoside 16 ready for further elongation
(75% from 15).
The dimannosidic glycosyl donor 21 was efficiently obtained
from orthoester 1721 taking advantage of the higher reactivity of
selenoglycosides over thioglycosides towards activation.22,23
17 was first opened with 1.5 equiv. of selenophenol24 under
HgBr2 catalysis and gave (a-selenoglycoside 18 in 75% yield
(Scheme 2). The known thioglycoside 19,25 obtained in 79%
from 17 after HgBr2-promoted ethanethiol opening, was
deacetylated (MeONa, MeOH) to give glycosyl acceptor 20 in
91% yield. Selective activation of selenoglycoside 18 with 1.1
equiv. of N-iodosuccinimide (NIS) and 10% trimethylsilyl
trifluoromethanesulfonate (TMSOTf),26 and coupling with 1.1
equiv. of thioglycoside 20 in CH2Cl2 at 218 °C gave the
expected a-linked dimannosidic compound 21 in 71% yield
with complete control of the new anomeric center. 21 was
isolated in slightly lower yield (64%) when the original silver
trifluoromethanesulfonate/potassium carbonate combination22
was used as promoter for the glycosylation of 20 with 18.
Final coupling was done by glycosylation of disaccharide 16
with 1.5 equiv. of thiodisaccharide 21 under NIS/catalytic
TMSOTf activation (Scheme 3). A 70% yield of tetra-
saccharidic compounds 22 was obtained as a 4:1 a,b anomeric
20 K. Bock and C. Pedersen, Adv. Carbohydr. Chem. Biochem., 1983, 41,
27; R. C. Beier and B. P. Mundy, J. Carbohydr. Chem., 1984, 3, 253.
21 N. E. Franks and R. Montgomery, Carbohydr. Res., 1968, 6, 286.
22 S. Mehta and B. M. Pinto, Tetrahedron Lett., 1991, 32, 4435; J. Org.
Chem., 1993, 58, 3269.
23 P. Grice, S. V. Ley, J. Pietruszka and H. W. M. Priepke, Angew. Chem.,
Int. Ed. Engl., 1996, 35, 197.
24 W. H. H. Gunther, J. Org. Chem., 1966, 31, 1202.
25 T. Peters, Liebigs Ann. Chem., 1991, 135.
26 G. H. Veeneman, S. H. Van Leeuwen, H. Zuurmond and J. H. Van
Boom, J. Carbohydr. Chem., 1991, 9, 783.
25
27 Selected data for 1. [a]D +18 (c 0.44, water); 1H NMR (500 MHz,
Scheme 3 Reagents and conditions: i, 1 equiv. 16, 1.5 equiv. 21, 1.7 equiv.
NIS, 0.15 equiv. TMSOTf, MS 4 Å, CH2Cl2, 215 °C, 1 h, 70%; ii, 0.5 M
MeONa, MeOH, room temp., 5 h, 75%; iii, H2, Pd(OH)2/C, MeOH, room
temp., 1 h, 65%.
D2O, 293 K): d 5.16 (d, 1H, J 1.7 Hz, H-1B), 5.11 (d, 1H, J 4.5 Hz, H-1A),
5.10 (d, 1H, J 2 Hz, H-1), 5.02 (d, 1H, J 2 Hz, H-1BA). 13C NMR (125.72
MHz, D2O, 293 K) d 106.09 (C-1), 103.01 (C-1BA), 101.05 (C-1A), 98.86
(C-1B), 87.48 (C-2), 80.40 (C-2B), 76.67 (C-2A).
660
Chem. Commun., 2000, 659–660