66
R.-C. Tang et al. / Journal of Molecular Catalysis B: Enzymatic 63 (2010) 62–67
Table 8
TGase-catalyzed Henry reaction of aldehydes with nitropropane.a.
Entry
R
Time (h)
Yield (%)b
Anti:sync
1
2
3
4
4-MeOC6H4(1d)
4-CH3C6H4(1e)
4-NO2C6H4(1h)
Isobutyl(1s)
168
168
72
22
35
94
53
1:2.9
1:1.7
1:3.8
1:1
72
a
All reactions were carried out using aldehyde (1 mmol), TGase (200 mg), nitropropane (2.2 g, 25 mmol), deionized water (3 ml) and CH2Cl2 (5 ml) at 30 ◦C.
Yield of the isolated product after chromatography on silica gel.
b
c
Determined by HPLC on chiral stationary phase (AD-H) and 1H NMR.
References
[1] T. Arai, R. Takashita, Y. Endo, M. Watanabe, A. Yanagisawa, J. Org. Chem. 73
(2008) 4903–4906.
[2] G. Rosini, in: M.B. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis,
vol. 2, Pergamon, Oxford, UK, 1999, pp. 321–340.
[3] H.W. Pinnick, in: L.A. Paquette (Ed.), Organic Reactions, vol. 38, Wiley, New
York, 1990 (Chapter 3).
[4] A. Cwik, A. Fuchs, Z. Hell, J.M. Clacens, Tetrahedron 61 (2005) 4015–4021.
[5] I. Kudyba, J. Raczko, Z. Urbanczyk-Lipkowska, J. Jurczak, Tetrahedron 60 (2004)
4807–4820.
[6] G. Rosini, R. Ballini, Synthesis (1988) 833–847.
[7] F.A. Luzzio, Tetrahedron 57 (2001) 915–945.
[8] C. Palomo, M. Oiarbide, A. Laso, Eur. J. Org. Chem. 16 (2007) 2561–2574.
[9] P.A. Wade, R.M. Giuliano, in: H. Feuer, A.T. Nielsen (Eds.), Nitro Compounds:
Recent Advances in Synthesis and Chemistry, VCH, 1990, pp. 137–265.
[10] N. Ono, The Nitro Group in Organic Synthesis, Wiley, New York, 2001, pp. 30–69.
[11] H. Sasai, T. Suziki, S. Arai, T. Arai, M. Shibasaki, J. Am. Chem. Soc. 114 (1992)
4418–4420.
[12] K. Iseki, S. Oishi, H. Sasai, M. Shibasaki, Tetrahedron Lett. 37 (1996) 9081–9084.
[13] B.M. Trost, V.S.C. Yeh, Angew. Chem. Int. Ed. 41 (2002) 861–863.
[14] D.A. Evans, D. Seidel, M. Rueping, H.W. Lam, J.T. Shaw, C.W. Downey, J. Am.
Chem. Soc. 125 (2003) 12692–12693.
Scheme 3. Proposed mechanism of enzymatic Henry reaction.
length of carbon chain in the nitroalkane also obviously affected the
enzymatic Henry reaction. Generally, longer reaction times were
ance.
tion mechanism of TGase-catalyzed Henry reaction, depicted in
Scheme 3. From the experiments catalyzed by denatured enzyme,
inhibited enzyme and non-enzyme protein as well as blank experi-
ment (Table 1), it is reasonable to think that the reaction takes place
in a specific fashion on the catalytic site of TGase. Firstly, an amine
group on the reaction site assists the deprotonation of nitroalkane
to give nitronate. Secondly, nucleophilic attack of nitronate onto
carbonyl carbon in aldehyde forms C–C bond. Meanwhile, the
resulted aminium on enzyme provides a proton to carbonyl oxygen
to give -nitro alcohol.
[15] C. Palomo, M. Oiarbide, A. Laso, Angew. Chem. Int. Ed. 44 (2005) 3881–3884.
[16] H. Maheswaran, K.L. Prasanth, G.G. Krishna, K. Ravikumar, B. Sridhar, M.L. Kan-
tam, Chem. Commun. 39 (2006) 4066–4068.
[17] K. Ma, J. You, Chem. Eur. J. 13 (2007) 1863–1871.
[18] A. Bulut, A. Aslan, O. Dogan, J. Org. Chem. 73 (2008) 7373–7375.
[19] A. Zaks, D.R. Dodds, Drug Discov. Today 2 (1997) 513–531.
[20] A.M. Klibanov, Nature 409 (2001) 241–246.
[21] T. Purkarthofer, K. Gruber, M. Gruber-Khadjawi, K. Waich, W. Skranc, D. Mink,
H. Griengl, Angew. Chem. Int. Ed. 45 (2006) 3454–3456.
[22] M. Gruber-Khadjawi, T. Purkarthofer, W. Skranc, H. Griengl, Adv. Synth. Catal.
349 (2007) 1445–1450.
[23] R.N. Singh, K. Mehta, Eur. J. Biochem. 225 (1994) 625–634.
[24] S. Del-Duca, S. Beninati, D. Serafini-Fracassini, Biochem. J. 305 (1995) 233–
237.
[25] H. Yasueda, Y. Kumazawa, M. Motoki, Biosci. Biotechnol. Biochem. 58 (1994)
2041–2045.
Finally, although various conditions were tested to improve the
enantioselectivity, no clear progress has been made at this time.
Further studies on enzymatic asymmetric Henry reactions are still
in progress in our lab.
[26] M. Griffin, R. Casadio, C.M. Bergamini, Biochem. J. 368 (2002) 377–396.
[27] K. Yokoyama, N. Nio, Y. Kikuchi, Appl. Microbiol. Biotechnol. 64 (2004) 447–454.
[28] O.P. Ward, A. Singh, Curr. Opin. Biotechnol. 11 (2000) 520–526.
[29] K. Li, T. He, C. Li, X.W. Feng, N. Wang, X.Q. Yu, Green Chem. 11 (2009) 777–779.
[30] R.J. Kazlauskas, Curr. Opin. Chem. Biol. 9 (2005) 195–201.
[31] P. Berglund, S. Park, Curr. Org. Chem. 9 (2005) 325–336.
[32] G. Hasnaoui-Dijoux, M. Majeric Elenkov, J.H. Lutje Spelberg, B. Hauer, D.B.
Janssen, ChemBioChem 9 (2008) 1048–1051.
4. Conclusion
In conclusion, we describe here the first TGase-catalyzed Henry
reaction. The cheap and readily available TGase efficiently catalyzed
the Henry reaction of nitroalkanes with aliphatic, aromatic and
hetero-aromatic aldehydes. The influence of reaction conditions
including solvents, water content, stoichiometry of nitroalkane,
loading of catalyst and temperature was also investigated. This
TGase-catalyzed Henry reaction provides a novel case of catalytic
promiscuity and might be a useful synthetic method for applica-
tion.
[33] R. Kourist, S. Bartch, L. Fransson, K. Hult, U.T. Bornscheuer, ChemBioChem 9
(2008) 67–69.
[34] J.M. Xu, F. Zhang, B.K. Liu, Q. Wu, X.F. Lin, Chem. Commun. 20 (2007) 2078–2080.
[35] O. Torre, I. Alfonso, V. Gotor, Chem. Commun. 15 (2004) 1724–1725.
[36] C. Branneby, P. Carlqvist, A. Magnusson, K. Hult, T. Brinck, P. Berglund, J. Am.
Chem. Soc. 125 (2003) 874–875.
[37] M. Svedendahl, K. Hult, P. Berglund, J. Am. Chem. Soc. 127 (2005) 17988–17989.
[38] P. Carlqvist, M. Svedendahl, C. Branneby, K. Hult, T. Brinck, P. Berglund, Chem-
BioChem 6 (2005) 331–336.
[39] K. Hult, P. Berglund, Trends Biotechnol. 25 (2007) 231–238.
[40] S.P. Yao, D.S. Lu, Q. Wu, Y. Cai, S.H. Xu, X.Fu. Lin, Chem. Commun. 17 (2004)
2006–2007.
[41] W.B. Wu, N. Wang, J.M. Xu, Q. Wu, X.F. Lin, Chem. Commun. 18 (2005)
2348–2350.
Acknowledgements
[42] W.B. Wu, J.M. Xu, Q. Wu, D.S. Lv, X.F. Lin, Adv. Synth. Catal. 348 (2006) 487–492.
[43] F.W. Lou, B.K. Liu, Q. Wu, D.S. Lv, X.F. Lin, Adv. Synth. Catal. 350 (2008)
1959–1962.
Financial support from the High-Tech Training Fund of South-
west University (XSGX0601) is gratefully acknowledged.