Raman characterization of resistive organic nonvolatile memories
more abundant cis form in the film as deposited and reaching a
new population dominated by the trans species after few hours.
Atthisstageofthework,theRamananalysisgivesthisindication:
in the solid state (film), the system tends to form a crystalline phase
as indicated by the observation of the specific markers of the trans
conformer in opaque regions. On the other hand, the remarkably
different Raman features of the film observed immediately after
deposition, together with its transparent appearance, suggest
that in the starting film the material morphology corresponds to a
mainly amorphous molecular arrangement.
[6] M. Caironi, D. Natali, E. Canesi, A. Bianco, C. Bertarelli, G. Zerbi,
M. Sampietro, Thin Solid Films 2008, 516, 7680.
[7] J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science 1999, 286,
1550.
[8] A. O. Solak, S. Ranganathan, T. Itoh, R. L. McCreery, Electrochem.
Solid State Lett. 2002, 5, E43.
[9] A. K. Rath, A. J. Pal, Org. Elec. 2008, 9, 495.
[10] B. Mukherjee, A. J. Pal, Org. Elec. 2006, 7, 249.
[11] S. Di Motta, E. Di Donato, F. Negri, G. Orlandi, D. Fazzi, C. Castiglioni,
J. Am. Chem. Soc. 2009, 131, 6591.
[12] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey,
J. L. Bre´das, Chem. Rev. 2007, 107, 926.
[13] A. Brillante, I. Bilotti, R. G. Della Valle, R. Venuti, M. Masino,
A. Girlando, Adv. Mater. 2005, 17, 2549.
[14] E. Venuti, I. Bilotti, R. G. Della Valle, A. Brillante, P. Ranzieri,
M. Masino, A. Girlando, J. Phys. Chem. C 2008, 112, 17416.
[15] H. L. Cheng, W. Y. Chou, C. W. Kuo, Y. W. Wang, Y. S. Mai, F. C. Tang,
S. W. Chu, Adv. Funct. Mater. 2008, 18, 285.
[16] R. L. McCreery, J. Wu, R. P. Kalakodimiw, Phys. Chem. Chem. Phys.
2006, 8, 2572.
Conclusions
We have shown that Raman spectroscopy is a powerful key
technique to characterize the conformational isomers of DPBT
molecules, which have been proposed for the fabrication of
nonvolatile resistive memory devices.
[17] L. G. Kaake, Y. Zou, M. J. Panzer, C. D. Frisbie, X. Y. Zhu, J. Am. Chem.
Soc. 2007, 129, 7824.
One structural isomer, namely Z-OCH3, displaying two different
conformers of similar stability, has been considered. From a direct
comparison between experimental and simulated Raman spectra,
it is apparent that unambiguous spectroscopic markers related to
the presence of the trans or of the cis Z–OCH3 conformer can be
identified and rationalized in two specific spectral regions. Raman
spectra of Z-OCH3 in solution show that trans and cis conformers
arebothpresentindynamicequilibrium. Afittingprocedurebased
on predicted spectra indicates that in solution the relative popula-
tion of the cis form is larger than that of trans form (cis: trans ca 4:1).
Both the X-ray analysis and the Raman spectra on single crystals,
validated on the basis of the theoretical simulations, confirm the
presence of the only trans species due to the appearance of sharp
bands near 500 and 600 cm−1. For the material in thin film, which
is representative of the active layer of the memory devices, a solid-
state rearrangement occurs. Indeed, the film as deposited shows
Raman signals typical of the cis species (as for the solution phase),
but after few hours at room temperature, the Raman spectrum
clearly indicates the presence only of the trans conformer in some
specific opaque regions of the film, testifying an isomerization of
the cis species accompanied by a crystallization process.
[18] Q. Bao, Y. Gan, J. Li, C. M. Li, J. Phys. Chem. C 2008, 112, 19718.
[19] E. Canesi, G. Dassa, C. Botta, A. Bianco, C. Bertarelli, G. Zerbi, Open
Chem. Phys. J. 2008, 1, 23.
[20] D. Fazzi, C. Castiglioni, F. Negri, C. Bertarelli, A. Famulari, S. V. Meille,
G. Zerbi, J. Phys. Chem. C 2008, 112, 18628.
[21] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
[22] G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham,
W. A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193.
[23] Gaussian 03, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr.,
T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,
H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas,
D. K. Malick,A. D. Rabuck,K. Raghavachari,J. B. Foresman,J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong,
C. Gonzalez, J. A. Pople, Gaussian, Inc.: Wallingford, 2004,
[24] J. P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 2007, 111, 11683.
[25] R. M. Kellogg, A. P. Schaap, E. T. Harper, H. Wynberg, J. Org. Chem.
1968, 33, 2902.
Acknowledgement
[26] H. Kurata, S. Kim, T. Fujimoto, K. Matsumoto, T. Kawase, T. Kubo,
This work has been partly supported by grants from the
Italian Ministry of Education, University and Research through
FIRB projects ‘Molecular compounds and hybrid nanostructured
materials with resonant and nonresonant optical properties for
photonic devices’ (RBNE033KMA) and from MIUR grant ex 60%.
Org. Lett. 2008, 10, 3837.
[27] J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev. 2005, 105, 2999.
[28] F. Negri,C. Castiglioni,M. Tommasini,G. Zerbi,J.Phys.Chem.A2002,
106, 3306.
[29] N. C. Handy, P. E. Maslen, R. D. Amos, J. S. Andrews, C. W. Murray,
G. J. Laming, Chem. Phys. Lett. 1992, 192, 506.
[30] G. Zerbi, Vibrational Spectroscopy of Polymers: Principles and Practice
(Eds.: N. Everall, J. M. Chalmers, P. R. Griffiths) John Wiley and Sons:
Chichester, 2007.
[31] E. Agosti, M. Rivola, V. Hernandez, M. Del Zoppo, G. Zerbi, Synth.
Met. 1999, 100, 101.
Supporting information
Supporting information may be found in the online version of this
article.
[32] A. Milani, L. Brambilla, M. Del Zoppo, G. Zerbi, J. Phys. Chem. B 2007,
111, 1271.
[33] F. Negri, E. di Donato, M. Tommasini, C. Castiglioni, G. Zerbi,
K. Muellen, J. Chem. Phys. 2004, 120, 11889.
[34] C. Castiglioni, M. Tommasini, G. Zerbi, Phil. Trans. R. Soc. Lond. A
References
[1] J. Scott Campbell, L. Bozano, Adv. Mater. 2007, 19, 1452.
[2] L. Qi-Dan,L. Der-Jang,C. Zhu,D. Siu-HungChan,E. T. Kang,N. Koon-
Gee, Prog. Polym. Sci. 2008, 33, 917.
2004, 362, 2425.
[35] C. Castiglioni, M. Gussoni, J. T. Lopez Navarrete, G. Zerbi, Solid State
Comm. 1988, 65, 625.
[36] M. Gussoni, C. Castiglioni, G. Zerbi, in Spectroscopy of Advanced
Materials (Eds: R. J. H. Clark, R. H. Hester), Wiley: New York, 1991,
p 251.
[3] L. Qi-Dan, L. Der-Jang, Teo. E. Yeow-Hwee, C. Zhu, Siu.-Hung. Chan,
E. T. Kang, N. Koon-Gee, Polymer 2007, 48, 5182.
[4] A. Bandhopadhyay, A. J. Pal, J. Phys. Chem. B 2003, 107, 2531.
[5] M. Caironi, D. Natali, M. Sampietro, C. Bertarelli, A. Bianco,
A. Dundulachi, E. Canesi, G. Zerbi, Appl. Phys. Lett. 2006, 89, 243519.
c
J. Raman Spectrosc. 2010, 41, 406–413
Copyright ꢀ 2009 John Wiley & Sons, Ltd.