2422
J . Org. Chem. 1999, 64, 2422-2427
Solu tion P h a se Com bin a tor ia l Syn th esis of Bia r yl Libr a r ies
Em p loyin g Heter ogen eou s Con d ition s for Ca ta lysis a n d Isola tion
w ith Size Exclu sion Ch r om a togr a p h y for P u r ifica tion
Dale L. Boger,*,† J oel Goldberg,† and Carl-Magnus Andersson‡,§
Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute,
10550 North Torrey Pines Road, La J olla, California 92037 and Lund University, Organic Chemistry 1,
P.O. Box 124, S-221 00 Lund, Sweden
Received November 9, 1998
A convenient and effective approach to the solution phase synthesis of biaryl libraries from
iodoarenes is described enlisting 10% Pd-C as an inexpensive and readily available supported
catalyst. Isolation and purification of small library mixtures, individual library members, and
intermediates in the multistep sequence by a combination of liquid-liquid and liquid-solid
extractions and size exclusion chromatography are detailed.
In tr od u ction
tionally in combination with olefin metathesis reactions,10
to produce multimilligram quantities of library mixtures
or individual compounds in multistep sequences. Typi-
cally, liquid-liquid or liquid-solid extractive purification
was used to reliably produce libraries of high purity for
screening purposes. As a complement to these structur-
ally flexible libraries, we have extended the convergent,
solution phase dimerization strategy to the preparation
of more rigid and densely functionalized systems. On the
basis of considerations related to target compound shape
and size as well as library deconvolution, biaryl formation
was selected as one of the primary strategies. However,
since the approach would constitute a rare example of
solution phase combinatorial synthesis based on carbon-
carbon bond formation under conditions where extractive
purification is precluded, a concern was the development
of reaction conditions and purification methods allowing
reliable production of highly pure biaryl mixtures.11
Herein, we disclose studies which address these concerns
Ligand-induced dimerization or oligomerization has
been established as a general mechanism for the activa-
tion of certain cell surface receptors.1 Important examples
of this, where hormone antagonists or agonists would be
of pharmacological significance, include tyrosine kinase
receptors2 and cytokine receptors.3 Accumulating evi-
dence that such receptor dimerization events may be
driven by hormone binding involving only a relatively
small cluster of residues,4 accompanied by stabilizing
inter-receptor interactions, has driven the search for
small molecule hormone antagonists and agonists. Pep-
tide5 as well as nonpeptide6 agonists promoting receptor
homodimerization have recently been identified through
the random screening of compound libraries. Comple-
mentary to such approaches, solution phase combinato-
rial chemistry7 provides a unique potential for generating
C2-symmetrical diversity through the synthetic conver-
gent dimerization of combinatorially assembled building
blocks. We have recently developed such solution phase
approaches which utilized amide bond formation,8,9 op-
(9) Boger, D. L.; Goldberg, J .; J iang, W.; Chai, W.; Ducray, P.; Lee,
J . K.; Ozer, R. S.; Andersson, C.-M. Bioorg. Med. Chem. 1998, 6, 1347.
Boger, D. L.; Ducray, P.; Chai, W.; J iang, W.; Goldberg, J . Bioorg. Med.
Chem. Lett. 1998, 8, 2339. Boger, D. L.; Ozer, R. S.; Andersson, C.-M.
Bioorg. Med. Chem. Lett. 1997, 7, 1903.
(10) Boger, D. L.; Chai, W.; J in, Q. J . Am. Chem. Soc. 1998, 120,
7220. Boger, D. L.; Chai, W. Tetrahedron 1998, 54, 3955. Boger, D. L.;
Chai, W.; Ozer, R. S.; Andersson, C.-M. Bioorg. Med. Chem. Lett. 1997,
7, 463.
† The Scripps Research Institute.
‡ Lund University.
§ Present address: Acadia Pharmaceuticals, Fabriksparken 58, 2620
Glostrup, Denmark.
(1) (a) Hinterding, K.; Alonso-Diaz, D.; Waldmann, H. Angew.
Chem., Int. Ed. Engl. 1998, 37, 688. (b) Klemm, J . D.; Schreiber, S.
L.; Crabtree, G. R. Annu. Rev. Immunol. 1998, 16, 569.
(2) Weiss, A.; Schlessinger J . Cell 1998, 94, 277.
(3) Reineke, U.; Schneider-Mergener J . Angew. Chem., Int. Ed. 1998,
37, 769.
(4) Wells, J . A. Science 1996, 273, 449.
(5) Livnah, O.; Stura, E. A.; J ohnson, D. L.; Middleton, S. A.;
Mulcahy, L. S.; Wrighton, N. C.; Dower, W. J .; J olliffe, L. K.; Wilson,
I. A. Science 1996, 273, 464.
(6) Tian, S.; Lamb, P.; King, A. G.; Miller, S. G.; Kessler, L.; Luengo,
J . I.; Averill, L.; J ohnson, R. K.; Gleason, J . G.; Pelus, L. M.; Dillon, S.
B.; Rosen, J . Science 1998, 281, 257.
(7) For recent reviews on solution phase combinatorial chemistry,
see: Merrit, A. T. Comb. Chem. High Throughput Screening 1998, 1,
57. Coe, D.; Storer, R. Annu. Rep. Comb. Chem. Mol. Div. 1997, 1, 50.
For a review on polymer assisted solution-phase library synthesis,
see: Flynn, D. L.; Devraj, R. V.; Parlow, J . J . Curr. Op. Drug Discuss.
Dev. 1998, 1, 41.
(8) Cheng, S.; Comer, D. D.; Williams, J . P.; Myers, P. L.; Boger, D.
L. J . Am. Chem. Soc. 1996, 118, 2567. Boger, D. L.; Tarby, C. M.;
Myers, P. L.; Caporale, L. H. J . Am. Chem. Soc. 1996, 118, 2109.
Cheng, S.; Tarby, C. M.; Comer, D. D.; Williams, J . P.; Caporale, L.
H.; Myers, P. L.; Boger, D. L. Bioorg. Med. Chem. 1996, 4, 727.
(11) Biaryl libraries, see: Pryor, K. E.; Shipps, G. W., J r.; Skyler,
D. A.; Rebek, J ., J r. Tetrahedron 1998, 54, 4107 and Selway, C. N.;
Terrett, N. K. Bioorg. Med. Chem. 1996, 4, 645. (solution phase). For
solid-phase biaryl coupling libraries, see: Pavia, M. R.; Cohen, M. P.;
Dilley, G. J .; Dubuc, G. R.; Durgin, T. L.; Forman, F. W.; Hediger, M.
E.; Milot, G.; Powers, T. S.; Sucholeiki, I.; Zhou, S.; Hangaver, D. G.
Bioorg. Med. Chem. 1996, 4, 659. Blettner, C. G.; Ko¨nig, W. A.; Stenzel,
W.; Schotten, T. Synlett 1998, 295 (on soluble polymers). Neustadt, B.
R.; Smith, E. M.; Lindo, N.; Nechuta, T.; Bronnenkant, A.; Wu, A.;
Armstrong, L.; Kumar, C. Bioorg. Med. Chem. Lett. 1998, 8, 2395.
Chamoin, S.; Houldsworth, S.; Sniekus, V. Tetrahedron Lett. 1998,
39, 4175. Chamoin, S.; Houldsworth, S.; Kruse, C. G.; Bakker, I.;
Sniekus, V. Tetrahedron Lett. 1998, 39, 4179. Yoo, S.-E.; Seo, J -.S.;
Yi, K.-Y.; Gong, Y.-D. Tetrahedron Lett. 1997, 38, 1203. Guiles, J . W.;
J ohnson, S. G.; Murray, W. V. J . Org. Chem. 1996, 61, 5169. Larhed,
M.; Lindeberg, G.; Hallberg, A. Tetrahedron Lett. 1996, 37, 8219. Han,
Y.; Walker, S. D.; Young, R. N. Tetrahedron Lett. 1996, 37, 2703.
Marquais, S.; Arlt, M. Tetrahedron Lett. 1996, 37, 5491. Frenette, R.;
Friesen, R. W. Tetrahedron Lett. 1994, 35, 9177. Brown, S. D.;
Armstrong, R. W. J . Am. Chem. Soc. 1996, 118, 6331. Chenera, B.;
Finkelstein, J . A.; Veber, D. F. J . Am. Chem. Soc. 1995, 117, 11999.
Backes, B. J .; Ellman, J . A. J . Am. Chem. Soc. 1994, 116, 11171.
Forman, F. W.; Sucholeiki, I. J . Org. Chem. 1995, 60, 523.
10.1021/jo982234v CCC: $18.00 © 1999 American Chemical Society
Published on Web 03/16/1999