2760 J . Org. Chem., Vol. 64, No. 8, 1999
Malkov et al.
or C) in one portion. The mixture was stirred under nitrogen
until the reaction was complete (as evidenced by TLC), then
diluted with ether (20 mL), and washed successively with 5%
aqueous NaHCO3 and water. The organic phase was dried with
MgSO4, and the solvent was evaporated under reduced pres-
sure. The crude product was purified by flash chromatography
on silica gel (15 × 2 cm) with a 9:1 hexanes-ethyl acetate
mixture as an eluent.
1-P h en yl-3-(4′-m eth oxyp h en yl)-1-bu ten e (37). Acetate
7 (100 mg, 0.53 mmol) was reacted with anisole (26) (70 mg,
0.65 mmol) in the presence of catalyst B (5 mol %) in CH2Cl2
(5 mL) to give 37 (114 mg, 91%) as a colorless oil (Table 1,
entry 1): 1H NMR δ 1.43 (d, J ) 6.9 Hz, 3 H, Me), 3.58 (m, 1
H, 3-H), 3.76 (s, 3 H, OMe), 6.37 (m, 2 H, 1-H, 2-H), 6.85 (d, J
) 8.8 Hz, 2 H, 3′-H, 5′-H), 7.17 (d, J ) 8.8 Hz, 2 H, 2′-H, 6′-
H), 7.20-7.36 (m, 5 H, Ph); 13C NMR δ 21.3 (Me), 41.7 (3-
CH), 55.2 (OMe), 113.8 (3′,5′-CH), 126.1, 127.0, 128.2, 128.3,
128.5, 135.6 (1-CH), 137.6 and 137.7 (1′-C and 1′′-C), 158.0
(4′-C); MS (EI) m/z (%) 238 (71, M•+), 223 (100).
1-P h en yl-3-(4′-h ydr oxyph en yl)-1-bu ten e (38)an d 1-P h en -
yl-3-(2′-h yd r oxyp h en yl)-1-bu ten e (41). Acetate 7 (100 mg,
0.53 mmol) was reacted with phenol (27) (60 mg. 0.64 mmol)
in the presence of catalyst B (5 mol %) in CH2Cl2 (5 mL) to
afford an 18:82 mixture of 38 and 41 (111 mg, 94%) as a
colorless oil (Table 1, entry 2): MS (EI) m/z (%) 224 (73, M•+),
209 (100). 38: 1H NMR δ (measured in a mixture with the
ortho-isomer) 1.41 (d, J ) 6.9 Hz, 3 H, Me), 3.56 (m, 1 H, 3-H),
5.08 (br s, 1 H, OH), 6.36 (m, 2H, 1-H, 2-H), 6.75 (d, J ) 8.5
Hz, 2 H, 3′-H, 5′-H), 7.11 (d, J ) 8.5 Hz, 2 H, 2′-H, 6′-H), 7.17-
7.36 (m, 5 H, Ph); 13C NMR δ 21.8 (Me), 42.1 (3-CH), 115.8
(3′,5′-CH), 126.6, 127.5, 128.8, 129.0, 130.2, 136.1 (1-CH), 138.1
and 138.3 (1′, 1′′-C), 154.3 (4′-C). 41: 1H NMR δ (measured in
a mixture with the para-isomer) 1.47 (d, J ) 7.0 Hz, 3 H, Me),
3.88 (m, 3 H, 3-H), 5.08 (br s, 1 H, OH), 6.47 (m, 2 H, 1-H,
2-H), 6.87-7.4 (m, 2 H, 4′-H, 6′-H).
1-P h en yl-3-(4′-h yd r oxyp h en yl)-1-p r op en e (40)37b,c a n d
1-P h en yl-3-(2′-h yd r oxy-p h en yl)-1-p r op en e (42).37c Acetate
8 (100 mg, 0.57 mmol) was reacted with phenol (27) (60 mg,
0.64 mmol) in the presence of catalyst B (5 mol %) in CH2Cl2
(5 mL) to produce a 17:83 mixture of 40 and 42 (85 mg, 71%)
as a colorless oil (Table 1, entry 11): MS (EI) m/z (%) 210 (100,
1
M•+). 40: H NMR δ (measured in a mixture with the ortho-
isomer) 3.46 (d, J ) 6.0 Hz, 2 H, 3-H), 5.01 (s, 1 H, OH), 6.31
(dt, J ) 15.9, 6.0 Hz, 1 H, 2-H), 6.42 (d, J ) 16.0 Hz, 1 H,
1-H), 6.84 (d, J ) 8.5 Hz, 2 H, 3′-H, 5′-H), 7.13 (d, J ) 8.5 Hz,
2 H, 2′-H, 6′-H), 7.17-7.35 (m, 5 H, Ph); 13C NMR δ 38.9 (3-
CH2), 115.8 (3′,5′-CH), 126.6, 127.5, 129.0, 130.1, 130.3, 131.2
1
(1-CH), 132.8 and 138.0 (1′-C and 1′′-C), 154.3 (4′-C). 42: H
NMR δ (measured in a mixture with the para-isomer) 3.57 (d,
J ) 6.0 Hz, 2 H, 3-H), 4.93 (s, 1 H, OH), 6.38 (dt, J ) 15.8 and
6.0 Hz, 1 H, 2-H), 6.51 (d, J ) 16.0 Hz, 1 H, 1-H), 6.81 (d, J )
8.2 Hz, 6′-H), 6.88 (t, J ) 7.2, 1 H, 4′-H), 7.11-7.37 (m; 7H,
3′-H, 5′-H, 2′′-H, 6′′-H).
1-P h en yl-3-(2′-m eth oxy-5′-m eth ylph en yl)-1-bu ten e (43).
Acetate 7 (100 mg, 0.53 mmol) was reacted with 4-methylani-
sole (28) (85 mg, 0.70 mmol) in the presence of catalyst B (5
mol %) in CH2Cl2 (5 mL) to afford 43 (81 mg, 61%) as a
colorless oil (Table 1, entry 3): 1H NMR δ 1.40 (d, J ) 6.9 Hz,
3 H, 4-Me), 2.26 (s, 3 H, 5′-Me), 3.79 (s, 3 H, OMe), 4.06 (m, 1
H, 3-H), 6.41 (m, 2 H, 1-H, 2-H), 6.75 (d, J ) 8.8 Hz, 1 H,
3′-H), 7.03 (m, 2 H, 4′-H, 6′-H), 7.12-7.40 (m, 5 H, Ph); 13C
NMR δ 20.5 (Me), 21.0 (Me), 35.6 (3-CH), 56.1 (OMe), 111.1
(CH), 126.5 (2′,6′-CH), 127.2 (CH), 127.8 (CH), 128.5 (CH),
128.7 (CH), 128.8 (3′,5′-CH), 130.2 (C), 134.3 (C), 135.5(CH),
138.4 (C), 158.0 (2′′-C); MS (EI) m/z (%) 252 (89, M•+), 237
(100).
1-P h en yl-3-(2′-h ydr oxy-5′-m eth ylp h en yl)-1-bu ten e (44).
Acetate 7 (100 mg, 0.53 mmol) was reacted with p-cresol (29)
(70 mg, 0.65 mmol) in the presence of catalyst B (5 mol %) in
CH2Cl2 (5 mL) to furnish 44 (70 mg, 56%) as a colorless oil
(Table 1, entry 4): 1H NMR δ 1.46 (d, J ) 6.9 Hz, 3 H, 4-Me),
2.26 (s, 3 H, 5′-Me), 3.86 (qd; J ) 6.9, 5.0 Hz, 1 H, 3-H), 5.01
(s, 1 H, OH), 6.40 (dd, J ) 16.0, 5.0 Hz, 1 H, 2-H), 6.49 (d, J
) 16.0 Hz, 1 H, 1-H), 6.67 (d, J ) 8.2 Hz, 1 H, 3′-H), 6.89 (dd,
J ) 8.2, 1.9 Hz, 1 H, 4′-H), 6.98 (d, J ) 1.9 Hz, 1 H, 6′-H),
7.15-7.37 (m, 5 H, Ph); MS (EI) m/z (%) 238 (85, M•+), 91 (100).
1-P h en yl-3-(2′-h ydr oxy-5′-m eth oxyph en yl)-1-bu ten e (45)
an d 2,5-Bis(1′-ph en yl-1′-bu ten -3′-yl)-4-m eth oxyph en ol (48).
Acetate 7 (100 mg, 0.53 mmol) was reacted with 4-methoxy-
phenol (30) (90 mg, 0.72 mmol) in the presence of catalyst B
(5 mol %) in CH2Cl2 (5 mL) to give a 34:66 mixture of 45 and
48 (81 mg, 61%) as a colorless oil (Table 1, entry 5). The two
compounds were separated by column chromatography on
silica (20 × 2.5 cm) with a hexanes-ethyl acetate mixture (9:
1) as an eluent. The slower moving component was identified
as 45: 1H NMR δ 1.47 (d, J ) 7.2 Hz, 3 H, 4-Me), 3.76 (s, 3 H,
OMe), 3.87 (m, 1 H, 3-H), 4.84 (s, 1 H, OH), 6.39 (dd, J ) 16.0,
5.7 Hz, 1 H, 2-H), 6.49 (d, J ) 16.3 Hz, 1 H, 1-H), 6.66 (dd, J
) 8.8, 1.9 Hz, 1 H, 4′-H), 6.74 (d; J ) 8.8 Hz, 1 H, 3′-H), 6.78
(d, J ) 1.9 Hz, 1 H, 6′-H), 7.15-7.37 (m, 5 H, Ph); MS (EI)
m/z (%) 254 (58, M•+), 150 (100). The faster moving component
was identified as 48: 1H NMR (recorded for a ∼1:1 mixture of
diastereoisomers) δ 1.38 and 1.47 (2 × d, J ) 7.2 and 6.9 Hz,
respectively, 2 × 3 H, 4′-Me and 4′′-Me), 3.80 (s, 3 H, OMe),
3.86 and 4.02 (2 × m, 2 × 1 H, 3′-H and 3′′-H), 4.81 (s, 1 H,
OH), 6.36-6.54 (m, 4 H, 1′-H, 1′′-H, 2′-H, 2′′-H), 6.61 and 6.71
(2 × s, 2 × 1 H, 3-H and 6-H), 7.16-7.37 (m, 10 H, 2 × Ph);
MS (EI) m/z (%) 384 (62, M•+), 369 (100).
1-P h en yl-3-(4′-m eth oxyp h en yl)-1-p r op en e (39).37a,b Ac-
etate 8 (100 mg, 0.57 mmol) was reacted with anisole (26) (70
mg, 0.65 mmol) in the presence of catalyst B (5 mol %) in CH2-
Cl2 (5 mL) to furnish 39 (87 mg, 68%) as a colorless oil (Table
1, entry 10): 1H NMR δ 3.46 (d, J ) 6.0 Hz, 2 H, 3-H), 3.76 (s,
3 H, OMe), 6.31 (dt, J ) 15.9, 6.0 Hz, 1 H, 2-H), 6.42 (d, J )
16.0 Hz, 1 H, 1-H) 6.84 (d, J ) 8.5 Hz, 2 H, 3′-H, 5′-H), 7.13
(d, J ) 8.5 Hz, 2 H, 2′-H, 6′-H), 7.17-7.35 (m, 5 H, Ph), 13C
NMR δ 38.9 (3-CH2), 55.7 (OMe), 114.4 (3′,5′-CH), 126.6, 127.5,
129.0, 130.1, 130.2, 131.2 (1-CH), 132.6 and 138.0 (1′-C and
1′′-C), 158.6 (4′-C); MS (EI) m/z (%) 224 (100, M•+).
(37) Previously described products of the allylation are the following.
39: (a) Hase, T. Acta Chem. Scand. 1969, 23, 2403. (b) Wenkert, E.;
Fernandes, J . B.; Michelott, E. L.; Swindell, C. S. Synthesis 1983, 701.
40: ref 37b and (c) Dewar, M. J . S.; Nahlovsky, B. D. J . Am. Chem.
Soc. 1974, 96, 460. 42: ref 37c. 46: (d). Viktorova, E. A.; Shujkin, N.
I.; Karakhanov, E. A. Izv. Akad. Nauk SSSR, Ser Khim 1964, 2216.
47: (e) J urd, L.; Stevens, K.; Manners, G. Tetrahedron 1973, 29, 2347.
(f) J imenez, M. C.; Leal, P.; Miranda, M. A.; Tormos, R. J . Org. Chem.
1995, 60, 3243. 55: (g) Tarnopol’skii, Yu. I.; Belov, V. N. Khim.
Geterotsikl. Soedin. 1967, 10. 65: (h) Kamigata, N.; Satoh, H.; Kondoh,
T.; Kameyama, M. Bull. Chem. Soc. J pn. 1988, 61, 3575. 70: (i) Birch,
A. J .; Nadamuni, G. J . Chem. Soc., Perkin Trans. 1 1974, 545. 71: (j)
Fra´ter, G.; Schmid, H. Helv. Chim. Acta 1967, 50, 255. 72: (k)
Majumdar, K. C.; Kundu, A. K. Can. J . Chem. 1995, 73, 1727. 73: (l)
Kuhn, R.; Weiser, D. Chem. Ber. 1955, 88, 1601 and 1603. 77: ref 37h.
78: ref 37i. 81: (m) Tzeng, Y.-L.; Yang, P.-F.; Mei, N.-W.; Yuan, T.-
M.; Yu, C.-C.; Luh, T.-Y. J . Org. Chem. 1991, 56, 5289. 82: (n) Gnichtel,
H.; Beier, M. Liebigs Ann. Chem. 1981, 312. (o) Zimmerman, H. E.;
Swafford, R. L. J . Org. Chem. 1984, 49, 3069. (p) Hixson, S. S.; Gallucci,
C. R. J . Org. Chem. 1988, 53, 2713. (q) Del Vale, L. Stille, J . K.;
Hegedus, L. S. J . Org. Chem. 1990, 55, 3019. (r) Tofeva M. M.; Richard,
J . P. J . Am. Chem. Soc. 1996, 118, 11434. (s) Robbins, R. J .;
Ramamurthy, V. Chem. Commun. 1997, 1071. 83: (t) Aniol, M.; Lusiak,
P.; Wawrzenczyk, Cz. Heterocycles 1994, 38, 991. 84: ref 37t and (u)
Hurd, C. D.; Hoffman, W. A. J . Org. Chem. 1940, 5, 212. (v) Bader, A.
R. J . Am. Chem. Soc. 1956, 78, 1709. (w) Bader, A. R.; Bean, W. C. J .
Am. Chem. Soc. 1958, 80, 3073. (x) Birch, A. J .; Maung, M.; Pelter, A.
Aust. J . Chem. 1969, 72, 1923. (y) Hlubucek, J .; Ritchie, E.; Taylor,
W. C. Aust. J . Chem. 1971, 24, 2355. (z) Dewhirst, K. C.; Rust, F. F. J .
Org. Chem. 1963, 28, 798. (aa) Alberola, A.; Ortega, A. G.; Pedrosa,
R.; Bragado, J . L. P.; Amo-Rodriquez, J . F. J . Chem. Soc., Perkin Trans.
1 1983, 1209. 85: ref 37t. 86: ref 37h,t. 103: (bb) Alberola, A.;
Gonzalez-Ortega, A.; Pedrosa, R.; Vincente, M. Synthesis 1984, 238.
1-P h en yl-3-(2′-m et h oxy-5′-m et h ylp h en yl)-1-p r op en e
(46).37d Acetate 8 (100 mg, 0.57 mmol) was reacted with
4-methylanisole (28) (85 mg, 0.70 mmol) in the presence of
catalyst B (2 mol %) in CH2Cl2 (5 mL) to produce 46 (40 mg,
30%) as a colorless oil (Table 1, entry 12): 1H NMR δ 2.26 (s,
3 H, 5′-Me), 3.50 (d, J ) 5.5 Hz, 2 H, 3-H), 3.81 (s, 3 H, OMe),
6.34 (dt, J ) 15.7, 5.6 Hz, 1 H, 2-H), 6.43 (d, J ) 15.7 Hz, 1 H,
1-H), 6.76 (d, J ) 8.8 Hz, 1 H, 3′-H), 6.98 (m, 2 H, 4′-H, 6′-H),
7.14-7.37 (m, 5 H, Ph); MS (EI) m/z (%) 238 (100, M•+).
1-P h e n y l-3-(2′-h y d r o x y -5′-m e t h o x y p h e n y l)-1-p r o -
p en e (47)37e,f a n d 2,5-Bis-(1′-p h en yl-1′-bu ten -3′-yl)-4-m eth -
oxyp h en ol (49). Acetate 8 (100 mg, 0.57 mmol) was reacted