6-Chloropyridazin-3-yl Derivatives Active as Nicotinic Agents
J ournal of Medicinal Chemistry, 2002, Vol. 45, No. 18 4017
(9) Grich, J .; Sauter, F.; Siddiqi, S. M.; Ku¨enburg, B.; Bhattacharya,
K. Synthesis of (1R,4R)- and (1S,4S)-2,5-Diazabicyclo[2.2.1]-
heptanes and Their N-Substituted Derivatives. Synthesis 1990,
925-930.
(10) Portoghese, P. S.; Mikhail, A. A. Bicyclic Bases. Synthesis of 2,5-
Diazabicyclo[2.2.1]heptanes. J . Org. Chem. 1966, 31, 1059-1062.
(11) Sommer, H. Z.; Lipp, H. I.; J ackson, L. L. Alkylation of Amines.
A General Exhaustive Alkylation Method for the Synthesis of
Quaternary Ammonium Compounds. J . Org. Chem. 1971, 36,
824-828.
desired product and PMP. The obtained solid was filtered by
suction and heated with acetone (15 mL) for a few minutes.
After filtration, the solid was further washed with methanol,
to give the desired compound in acceptable purity. See Table
4 for data.
Bin d in g Assa ys. 1. Mem br a n e P r ep a r a tion s. Rat cere-
bral cortical membranes were purchased from ABS Inc.
(Wilmington, DE). Prior to use, the frozen membrane pellets
were slowly thawed, washed, and resuspended in 30 volumes
of assay buffer (composition, mM: Tris HCl, 50; NaCl, 120;
KCl, 5; MgCl2, 1; and CaCl2, 2.5; pH 7.4 at 4 °C). The
homogenate was centrifuged at 45000g for 20 min at 4 °C and
the pellet resuspended in ice-cold buffer.
(12) Anderson, D. J .; Arneric, S. P. Nicotinic Receptor Binding of [3H]-
Cytisine, [3H]Nicotine and [3H]Methylcarbamylcholine. Rat
Brain Eur. J . Pharm. 1994, 253, 261-267.
(13) Dewar, M. J . S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J . J . P.
AM1: A New General Purpose Quantum Mechanical Molecular
Model. J . Am. Chem. Soc. 1985, 107, 3902-3909.
(14) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti
Correlation-Energy Formula into a Functional of the Electron
Density. Phys. Rev. B 1988, 37, 785-789.
(15) Becke, A. D. Density-Functional Thermochemistry. III. The Role
of Exact Exchange. J . Chem. Phys. 1993, 98, 5648-5652.
(16) Chambers, C. C.; Hawkins, G. D.; Cramer, C. J .; Trulhar, D. G.
Model for Aqueous Solvation Based on Class IV Atomic Charges
and First Solvation Shell Effects. J . Phys. Chem. 1996, 100,
16385-16398.
(17) Barone, V.; Cossi, M. Quantum Calculation of Molecular Ener-
gies and Energy Gradients in Solution by a Conductor Solvent
Model. J . Phys. Chem. A 1998, 102, 1995-2001.
(18) Glennon, R. A.; Dukat, M. Nicotine Receptor Ligands. Med.
Chem. Res. 1996, 465-486.
(19) Badio, B.; Shi, D.; Garraffo, H. M.; Daly, J . W. Antinociceptive
Effects of the Alkaloid Epibatidine: Further Studies on Involve-
ment of Nicotinic Receptors. Drug Dev. Res. 1995, 36, 46-59.
(20) Macallan, D. R.; Lunt, G. G.; Wonnacott, S.; Swanson, K. L.;
Rapoport, H.; Albuquerque, E. X. Methyllycaconitine and (+)-
Anatoxin-a Differentiate Between Nicotinic Receptors in Ver-
tebrate and Invertebrate Nervous Systems. FEBS Lett. 1988,
226, 357-363.
2. [3H]-(-)-Cytisin e Bin d in g. Binding conditions were as
previously described.12 Samples containing 150-200 µg of
protein, 0.7 nM [3H]-(-)-cytisine (30 Ci/mmol), and the various
concentrations of the nAChR modulators were incubated in a
final volume of 500 µL for 75 min at 4 °C in triplicate.
Nonspecific binding was determined in the presence of 10 µM
(-)-nicotine.
Mod elin g St u d ies. Calculations with the semiempirical
AM1 method13 were performed using the PC Spartan Pro
molecular modeling program.27 Molecules were built from the
model kit containing the atomic fragments and subjected to a
preliminary refinement through the “minimize” option. Com-
pounds in the protonated form or as quaternary ammonium
cations were subjected to the conformational search through
the conformational distribution option. Moreover, energy
profiles for rotation around the single bond connecting the aryl
moiety to the molecules were determined to ensure that the
conformational search had located all minima. Solvation
energy was determined with the AM1-SM5.4/A method.16 The
minimum energy geometries found with AM1 were used as
starting geometries for B3LYP/6-31G optimizations performed
with the Gaussian 98 package.28 The energies of the water-
solvated conformations were recalculated with the C-PCM
approach17 implemented in the Gaussian 98 package. The A-B
distance was directly measured as the distance between the
two nitrogen atoms, whereas the A-C distance was measured
as the distance between the ammonium nitrogen and the
middle point of the segment connecting the C3 and C6 atoms
of the heteroaromatic ring. Molecular volumes of a space-filling
model were calculated by Spartan Pro.
(21) Schmitt, J . D. Exploring the Nature of Molecular Recognition
in Nicotinic Acetylcholine receptors. Curr. Med. Chem. 2000, 7,
749-800.
(22) Recently binding affinity of piperazine derivatives 3a -c on the
nicotinic receptor of rat brain was published by other authors;
they also found the best affinity for 3c, followed by 3a , and last
3b; however, their Ki values appear to be somewhat higher than
the values we found. Romanelli, M. N.; Manetti, D.; Scapecchi,
S.; Borea, P. A.; Dei, S.; Bartolini, A.; Ghelardini, C.; Gualtieri,
F.; Guandalini, L.; Varani, K. Structure-Affinity Relationship
of a Unique Nicotinic Ligand: N1-Dimethyl-N4-phenylpiper-
azinium Iodide (DMPP). J . Med. Chem. 2001, 44, 3946-3955.
(23) Beers, W. H.; Reich, E. Structure and Activity of Acetylcholine.
Nature 1970, 228, 917-922.
(24) Sheridan, R. P.; Nilakantana, R.; Dixon, J . S.; Venkataraghavan,
R. The Ensemble Approach to Distance Geometry: Application
to the Nicotinic Pharmacophore. J . Med. Chem. 1986, 29, 899-
906.
(25) Glennon, R. A.; Herndon, J . L.; Dukar, M. Epibatidine-Aided
Studies toward Definition of a Nicotine Receptor Pharmacofore.
Med. Chem. Res. 1994, 4, 461-473.
Refer en ces
(1) Tønder, J . E.; Olesen, P. H. Agonists at the R4â2 Nicotinic
Acetylcholine Receptors: Structure-Activity Relationships and
Molecular Modelling. Curr. Med. Chem. 2001, 8, 651-674.
(2) Holladay, M. W.; Dart, M. J .; Lynch, J . K. Neuronal Nicotinic
Acetylcholine Receptors as Targets for Drug Discovery. J . Med.
Chem. 1997, 40, 4169-4193.
(3) Koren, A. O.; Horti, A. G.; Mukhin, A. G.; Gu¨ndisch, D.; Kimes,
A. S.; Dannals, R. F.; London, E. D. 2-, 5-, and 6-Halo-3-(2(S)-
azetidinylmethoxy)pyridines: Synthesis, Affinity for Nicotinic
Acetylcholine Receptors, and Molecular Modeling. J . Med. Chem.
1998, 41, 3690-3698.
(4) Abreo, M. A.; Lin, N.-H.; Garvey, D. S.; Gunn, D. E.; Hettinger,
A.-M.; Wasicak, J . T.; Pavlik, P. A.; Martin, Y. C.; Donnelly-
Roberts, D. L.; Anderson, D. J .; Sullivan, J . P.; Williams, M.;
Arneric, S. P.; Holladay, M. W. Novel 3-Pyridyl Ethers with
Subnanomolar Affinity for Central Neuronal Nicotinic Acetyl-
choline Receptors. J . Med. Chem. 1996, 39, 817-825.
(5) Spande, T. F.; Garraffo, M.; Edwards, M. W.; Yeh, J . C., Pannell,
L.; Daly, J . W. Epibatidine: A Novel (Chloropyridyl)azabicyclo-
heptane with Potent Analgesic Activity from Ecuadoran Poison
Frog. J . Am. Chem. Soc. 1992, 114, 3475-3478.
(6) Qian, C, G.; Li, T. C.; Shen, T. Y.; Libertine-Garahan, L.;
Eckman, J .; Biftu, T.; Ip, S. Epibatidine Is a Nicotinic Analgesic.
Eur. J . Pharmacol. 1993, 250, R13-R14.
(7) Rupniak, N. M. J .; Patel, S.; Marwood, R.; Webb, J .; Traynor, J .
R., Elliott, J .; Freedman, S. B.; Flechter, S. R.; Hill, R. G.
Antinociceptive and Toxic Effect of (+)-Epibatidine Oxalate
Attributable to Nicotinic Agonist Activity. Br. J . Pharmacol.
1994, 113, 1487-1493.
(8) Barlocco, D.; Cignarella, G.; Tondi, D.; Vianello, P.; Villa, S.;
Bartolini, A.; Ghelardini, C.; Galeotti, N.; Anderson, D. J .;
Kuntzweiler, T. A.; Colombo, D.; Toma, L. Mono- and Disubsti-
tuted-3,8-diazabicyclo[3.2.1]octane Derivatives as Analgesics
Structurally Related to Epibatidine: Synthesis, Activity, and
Modeling. J . Med. Chem. 1998, 41, 674-681.
(26) Campillo, N.; Pa´ez, J . A.; Alkorta, I.; Goya, P. A Theoretical
Study of Epibatidine. J . Chem. Soc., Perkin Trans. 2 1998,
2665-2669.
(27) SPARTAN, Wavefunction, Inc., Irvine, CA.
(28) Frisch, M. J .; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J . R.; Zakrzewski, V. G.; Montgomery,
J . A., J r.; Stratmann, R. E.; Burant, J . C.; Dapprich, S.; Millam,
J . M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.;
Tomasi, J .; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.;
Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J .; Petersson, G.
A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck,
A. D.; Raghavachari, K.; Foresman, J . B.; Cioslowski, J .; Ortiz,
J . V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J .; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.;
Challacombe, M.; Gill, P. M. W.; J ohnson, B. G.; Chen, W.; Wong,
M. W.; Andres, J . L.; Head-Gordon, M.; Replogle, E. S.; Pople,
J . A. Gaussian 98, revision A.9; Gaussian, Inc.: Pittsburgh, PA,
1998.
J M0208830