Fig. 1 A section of the X-ray structure of the 1-D coordination network I formed between 7 and CdCl2. H atoms, anions and solvent molecules are not
presented for clarity.
2-D sheets, the CHCl3 molecules were included within the
Cl
Cl Cd
Cl
S
S
S
S
Cl
Cl
cyclophane type cavities composing the 2-D network.
In conclusion, using the N2S4 bis-tridentate ligand and Cd(ii),
1- and 2-D coordination networks were obtained and charac-
terised in the solid state. For the 2-D network the inclusion of
two CHCl3 molecules within cavities formed by the organic and
inorganic fragments was observed. Based on the same strategy,
the formation of magnetic networks using paramagnetic metal
cations is currently under investigation.
Cl
Cl
S
S
S
S
N
N
Cd
Cl
Cl
Cd
N
N
Cd
Cl
Cl
S
S
Cl
Cl
S
S
Cl Cd
N
N
Cd
Cl
Cl
Cd
N
N
Cd
Cl
S
N
S
Cl
Cl
Cl
S
N
S
Cl
S
S
N
S
S
Cl
Cl
Cl
Notes and references
Cl
Cl
S
S
N
S
S
Cl Cd
Cl
N
S
S
Cd
Cl
Cl
Cl
Cl
Cl
Cd
N
S
S
Cd
‡ Crystal data: I (colorless, 294 K), C12H14CdCl2NS2·CHCl3·2H2O, M =
575.09, monoclinic, a = 29.037(1), b = 8.4340(2), c = 22.5310(8) Å, b =
Cl
S
126.63(1), U = 4428(2) Å3, Z = 8, space group C2/c, Dc = 1.73 g cm23
,
S
S
Cl Cd
N
Cd
Nonius Kappa CCD, Mo-Ka, m = 1.785 mm21, 5315 data with I > 3s(I),
R = 0.056, Rw = 0.076.
Cl
Cd
N
Cd
Cl
Cl
S
II (colorless, 173 K), C24H28Cd2Cl3N2S4·BF4·2CHCl3·CH3OH, M =
1161.52, orthorhombic, a = 16.3181(4), b = 14.8660(3), c = 35.9037(8)
Å, U = 8709.7(6) Å3, Z = 8, space group Pbcn, Dc = 1.77 g cm23, Nonius
Kappa CCD, Mo-Ka, m = 1.764 mm21, 4036 data with I > 3s(I), R =
0.051, Rw = 0.061. CCDC 182/1173.
Fig. 2 Partial representation of the 1- and 2-D coordination polymers I and
II.
1 R. Robson, in Comprehensive Supramolecular Chemistry, ed. J. L.
Atwood, J. E. D. Davies, D. D. Macnicol and F. Vögtle, Pergamon, vol.
6, ed. D. D. Macnicol, F. Toda and R. Bishop, 1996, pp. 733; O. M.
Yaghi, H. Li, C. Davis, D. Richardson and T. L. Groy, Acc. Chem. Res.,
1998, 31, 474.
2 T. L. Hennigar, D. C. MacQuarrie, P. Losier, R. D. Rogers and M. J.
Zaworotko, Angew. Chem., Int. Ed. Engl., 1997, 36, 972 and references
therein; M. Loï, M. W. Hosseini, A. Jouaiti, A. De Cian and J. Fischer,
Chem. Commun., 1999, submitted.
3 O. J. Gelling, F. van Bolhuis and B. L. Faringa, J. Chem. Soc., Chem.
Commun., 1991, 917; O. Kahn, Y. Journaux and C. Mathoniere, in
Magnetism : A Supramolecular Function, ed. O. Kahn, Kluwer,
Dordrecht, Netherlands, 1996, vol. C484, pp. 531; S. Decurtins, R.
Pellaux, A. Hauser and M. E. von Arx, ibid, p. 487; U. Velten and M.
Rehahn, Chem. Commun., 1996, 2639.
4 C. Kaes, M. W. Hosseini, C. E. F. Rickard, B. W. Skelton and A. White,
Angew. Chem., Int. Ed., 1998, 37, 920; G. Mislin, E. Graf, M. W.
Hosseini, A. De Cian, N. Kyritsakas and J. Fischer, Chem. Commun.,
1998, 2545.
Fig. 3 A section of the X-ray structure of the 2-D coordination network II
(see text). H atoms, anions and MeOH molecules are not presented for
clarity.
organic and inorganic fragments. For 7, the pyridine rings were
tilted by 230.7 and 32.2° with respect to the phenyl group. The
C–S and C–N distances were roughly the same as those
observed for the free 7 and for the above-mentioned 1-D
network. The coordination sphere around the Cd cations was
again composed of one N atom (average dNCd = 2.385 Å), two
S atoms (average dSCd = 2.697 Å) and three Cl2 anions.
Although all three Cl2, present in the coordination sphere of Cd
cation, adopted a bridging role between the metallic centres,
two of them were shared between two Cd centres (average dClCd
= 2.608 Å) within the 1-D network, whereas the third one
bridged two consecutive linear networks (dClCd = 2.559 Å) thus
leading to a two-dimensional polymer. The coordination
geometry around the metal centre was again distorted octahe-
dral with S–Cd–S, Cl–Cd–Cl and N–Cd–Cl angles of 147.6,
169.0 and 163.6°, respectively. With the Cd4Cl7 unit, the
Cd…Cd distances varied from 3.921 Å for the doubly bridged
cations to 4.625 Å for the singly bridged centres. Interestingly,
5 S. J. Loeb and G. K. H. Shimizu, J. Chem. Soc., Chem. Commun., 1993,
1395; A. Neels, B. Mathez Neels and H. Stoeckli-Evans, Inorg. Chem.,
1997, 36, 3402.
6 E. C. Constable, A. J. Edwards, D. Philips and P. R. Raithby, Supramol.
Chem., 1995, 5, 93.
7 H. A. Goodwin and F. Lions, J. Am. Chem. Soc., 1959, 81, 6415; J.-P.
Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V.
Balzani, F. Barigelletti, L. De Cola and L. Flamigni, Chem. Rev., 1994,
94, 993; P. Steenwinkel, H. Kooijman, W. J. J. Smeets, A. L. Spek,
D. M. Grove and G. van Koten, Organometallics, 1998, 17, 5411 and
references therein.
8 F. Teixidor, L. Escriche, I. Rodrigez and J. Casabo, J. Chem. Soc.,
Dalton Trans., 1989, 1381.
9 A. J. Blake, F. Demartin, F. A. Devillanova, A. Garau, F. Isaia, V.
Lippolis, M. Schröder and G. Verani, J. Chem. Soc., Dalton Trans.,
1996, 3705.
10 H. Takalo and J. Kankare, Acta Chem. Scand., 1987, 41, 219.
11 H. Takalo, Acta Chem. Scand., 1988, 42, 373.
12 O. C. Musgrave, J. Chem. Soc. C, 1970, 488.
2
whereas MeOH and BF4 anions were localised between the
Communication 9/00501C
604
Chem. Commun., 1999, 603–604