3358 J. Am. Chem. Soc., Vol. 121, No. 14, 1999
Twamley et al.
transition-metal complexes7,8 such as {RSb}2{W(CO)5}3 (R )
tBu, Me, Ph)7a or {Bi}2{W(CO)5}3,8a in which the multiple bond
was supported by metal bridging. Apart from the above-
mentioned phosphaarsenes, compounds having double bonding
between two different heavier pnictogens were confined to two-
solution species featuring phosphorus-antimony double
bonds,2k,6a,9 i.e., Mes*PdSbCH(SiMe3)2 and Mes*PdSbN-
strated that bulky m-terphenyl ligands, e.g., -C6H3-2,6-Mes2,
could be used to stabilize diphosphene derivatives,11 and recently
it has been shown that related m-terphenyl ligands can effect
the stabilization of unsymmetric dipnictenes such as 2,6-Mes2-
4-MeH2C6PdAsC6H2-2,6-Mes2-4-Me6h and MesPdEC6H3-2,6-
Trip2, (E ) As or Sb; Mes ) C6H2-2,4,6-Me3).12 It is now
shown that this type of ligand is generally applicable to the
stabilization of the first complete homologous series of double
bonds involving all the heavier group 15 elements. Moreover,
it is shown that such compounds are accessible in acceptable
yields by the simple and straightforward direct reduction of their
halide precursors.
t
(SiMe2 Bu)2, which, however, decomposed at room temperature.
Nonetheless, Okazaki, Tokitoh, and co-workers have shown that
stable examples of distibenes and dibismuthenes with unsup-
ported SbdSb or BidBi double bonds can be isolated by using
the very crowding -C6H2-2,4,6-{CH(SiMe3)2}3 ligand. A
synthetic route which involves deselenation of the six-membered
[E(Se)(C6H2-2,4,6-{CH(SiMe3)2}3)]3 (E ) Sb or Bi) precursor
was used to isolate these species.10 Parallel work has demon-
Experimental Section
General Procedures. All manipulations were carried out by using
modified Schlenk techniques under an atmosphere of N2 or in a Vacuum
Atmospheres HE 553 drybox. All solvents were distilled from a Na/K
alloy and degassed twice immediately before use. The compounds
LiC6H3-2,6-Mes2,13a Et2O‚LiC6H3-2,6-Trip2,13b and KC814 were prepared
according to literature procedures. Commercial AsCl3 and SbCl3 were
distilled before use, and commercial anhydrous BiCl3 was used as
received. 1H and 13C NMR data were recorded on a GE 300 MHz
instrument and referenced to the deuterated solvent (C6D6). Infrared
spectral data were recorded on a Perkin-Elmer PE-1430 instrument.
UV-vis spectral data were recorded on a Hitachi U 2000 instrument.
2,6-Mes2H3C6AsCl2 (1). A solution of LiC6H3-2,6-Mes2 (2.30 g, 7.20
mmol) in pentane/Et2O (2:1, 60 mL) was added dropwise (10 min) to
a stirred solution of AsCl3 (1.30 g, 7.20 mmol, freshly distilled) in
pentane/Et2O (2:1, 30 mL) with cooling to ca. -78 °C. The low
temperature was maintained for 2 h, and the mixture was allowed to
come to room temperature overnight. The solvent was removed under
reduced pressure, and the residue was extracted with C6H6 (2 × 100
mL) and filtered (Celite). The solvent was concentrated to approximately
40 mL and reheated to redissolve any precipitate. Cooling to room
temperature afforded colorless crystals of 1. The supernatant liquid was
separated, and its volume was reduced further to incipient crystalliza-
tion; combined yield 1.89 g, 57%; Mp: 206-208 °C; IR ν(As-Cl) 380,
(3) For example (a) Weber, L.; Reizig, K. Angew. Chem., Int. Ed. Engl.
1985, 24, 865. (b) Weber, L.; Reizig, L.; Bungardt, D.; Boese, R.
Organometallics 1987, 6, 110. (c) Weber, L.; Meine, G. Chem. Ber. 1987,
120, 457. (d) Weber, L.; Schumann, H.; Boese, R. Chem. Ber. 1990, 123,
1779. (e) Jutzi, P.; Opiela, S. Z. Anorg. Allg. Chem. 1992, 610, 75. (f)
Jutzi, P.; Opiela, S. J. Organomet. Chem. 1992, 431, C29. See also ref
2(t).
(4) (a) Flynn, K. M.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc.
1983, 105, 2085. (b) Flynn, K. M.; Murray, B. D.; Olmstead, M. M.; Power,
P. P. J. Am. Chem. Soc. 1983, 105, 7460. (c) Flynn, K. M.; Hope, H.;
Murray, B. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1983,
105, 7750. (d) Cowley, A. H.; Kilduff, J. E.; Lasch, J. G.; Norman, N. C.;
Pakulski, M.; Ando, F.; Wright, T. C. J. Am. Chem. Soc. 1983, 105, 7751.
(e) Borm, J.; Zsolnai, L.; Huttner, G. Angew. Chem., Int. Ed. Engl. 1983,
22, 977. (f) Cowley, A. H.; Kilduff, J. E.; Lasch, J. G.; Norman, N. C.;
Pakulski, M.; Ando, F.; Wright, T. C. Organometallics 1984, 3, 1044. (g)
Yoshifuji, M.; Hashida, T.; Inamoto, N.; Hirotsu, K.; Horiuchi, T.; Higuchi,
T.; Ito, K. Angew. Chem., Int. Ed. Engl. 1985, 24, 211. (h) Lang, H.; Orama,
O.; Huttner, G. J. Organomet. Chem. 1985, 291, 293. (i) Hinke, A.-M.;
Hinke, A.; Kuchen, W. Z. Naturforsch., B: Chem. Sci. 1986, 41, 629. (j)
Weber, L.; Reizig, K.; Boese, R. Angew. Chem., Int. Ed. Engl. 1986, 25,
755. (k) Weber, L.; Reizig, K.; Bungardt, D.; Boese, R. Chem. Ber. 1987,
120, 1421. (l) Bartlett, R. A.; Dias, H. V. R.; Flynn, K. M.; Hope, H.;
Murray, B. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1987,
109, 5693. (m) Bartlett, R. A.; Dias, H. V. R.; Flynn, K. M.; Olmstead, M.
M.; Power, P. P. J. Am. Chem. Soc. 1987, 109, 5699. (n) Borm, J.; Huttner,
G.; Zsolnai, L.; Evertz, K.; Berke, H. J. Organomet. Chem. 1987, 327,
223. (o) Weber, L.; Meine, G.; Boese, R.; Blaser, D. Chem. Ber. 1988,
121, 853. (p) Bartlett, R. A.; Dias, H. V. R.; Power, P. P. J. Organomet.
Chem. 1989, 362, 87. (q) Chernega, A. N.; Antipin, M. Yu.; Struchkov,
Yu. T.; Romaneko, V. D. Koord. Khim. 1989, 15, 1653. (r) Jutzi, P.; Meyer,
U.; Opiela, S.; Neumann, B.; Stammler, H.-G. J. Organomet. Chem. 1992,
439, 279. (s) Phillips, I. G.; Ball, R. G.; Cavell, R. G. Inorg. Chem. 1992,
31, 1633. (t) Weber, L.; Schumann, I.; Stammler, H.-G.; Neumann, B. J.
Organomet. Chem. 1993, 443, 175. (u) Yoshifuji, M.; Shinohara, N.; Toyota,
K. Tetrahedron Lett. 1996, 37, 7815. (v) An, D.-L.; Toyota, K.; Yasunami,
M.; Yoshifuji, M. J. Organomet. Chem. 1996, 508, 7.
(5) (a) Cowley, A. H.; Lasch, J. G.; Norman, N. C.; Pakulski, M. J. Am.
Chem. Soc. 1983, 105, 5506. (b) Couret, C.; Escudie´, J.; Madaule, Y.;
Ranaivonjatovo, H.; Wolf, J.-G. Tetrahedron Lett. 1983, 24, 2769. (c)
Cowley, A. H.; Norman, N. C.; Pakulski, M. J. Chem. Soc., Dalton Trans.
1985, 383. (d) Weber, L.; Sonnenberg, U. Chem. Ber. 1989, 122, 1809.
(6) (a) Cowley, A. H.; Lasch, J. G.; Norman, N. C.; Pakulski, M.;
Whittlesey, B. R. J. Chem. Soc., Chem. Commun. 1983, 881. (b) Escudie´,
J.; Couret, C.; Ranaivonjatovo, H.; Wolf, J.-G. Tetrahedron Lett. 1983, 24,
3625. (c) Jutzi, P.; Meyer, U. J. Organomet. Chem. 1987, 326, C6. (d)
Jutzi, P.; Meyer, U. Chem. Ber. 1988, 121, 559. (e) Weber, L.; Bungardt,
D.; Boese, R. Chem. Ber. 1988, 121, 1535. (f) Weber, L.; Bungardt, D.;
Sonnenberg, U.; Boese, R. Angew. Chem., Int. Ed. Engl. 1988, 27, 1537.
(g) Weber, L.; Bungardt, D.; Boese, R.; Blaser, D. Chem. Ber. 1988, 121,
1033. (h) Tsuji, K.; Fuji, Y.; Sasaki, S.; Yoshifuji, M. Chem. Lett. 1997,
855.
1
370 s, br cm-1; H NMR (300 MHz, C6D6) δ 2.10 (s, 12H, o-CH3),
2.14 (s, 6H, p-CH3), 6.79 (d, 2H, m-C6H3) 3JHH ) 7.5 Hz, 6.80 (s, 4H,
m-Mes), 7.09 (t, 1H, p-C6H3) 3JHH ) 7.5 Hz; 13C{1H} NMR (75 MHz,
C6D6) δ 21.18 (p-CH3), 21.51 (o-CH3), 128.61 (m-Mes), 130.70 (m-
C6H3), 132.53 (p-C6H3), 135.41 (p-Mes), 136.89 (o-Mes), 138.21 (i-
Mes), 146.71 (o-C6H3).
2,6-Mes2H3C6SbCl2 (2). A solution of LiC6H3-2,6-Mes2 (2.55 g, 7.96
mmol) in hexane/Et2O (1:1, 60 mL) was added dropwise (15 min) to
a stirred suspension of SbCl3 (1.82 g, 7.96 mmol) in hexane/Et2O (1:1,
20 mL) at -78 °C. The reaction mixture was kept at ca. -78 °C (3 h)
before it was allowed to come to room temperature, whereupon it was
stirred for a further 2.5 d. The solvent was then removed under reduced
pressure, and the residue was extracted with hexane (60 mL). Filtration
at 60 °C through Celite afforded a pale yellow solution. The solvent
volume was reduced slightly to incipient crystallization and was cooled
to afford the product 2 as pale yellow crystals: 1.72 g, 43%; mp: 163-
1
165 °C; IR ν(Sb-Cl) 340, 320 s, br cm-1; H NMR (300 MHz, C6D6) δ
2.09 (s, 12H, o-CH3), 2.14 (s, 6H, p-CH3), 6.79 (s, 4H, m-Mes), 6.87
3
3
(d, 2H, m-C6H3) JHH ) 7.8 Hz, 7.13 (t, 1H, p-C6H3) JHH ) 7.8 Hz;
13C{1H} NMR (75 MHz, C6D6) δ 21.19 (p-CH3), 21.51 (o-CH3), 128.82
(10) (a) Tokitoh, N.; Arai, Y.; Sasamori, T.; Okazaki, R.; Nagase, S.;
Uekusa, H.; Ohashi, Y. J. Am. Chem. Soc. 1998, 120, 433. (b) Tokitoh, N.;
Arai, Y.; Okazaki, R.; Nagase, S. Science 1997, 277, 78.
(11) (a) Urnezius, E.; Protasiewicz, J. D. Main Group Chem. 1996, 1,
369. (b) Shah, S.; Burdette, S. C.; Swavey, S.; Urbach, F. L.; Protasiewicz,
J. D. Organometallics 1997, 16, 3395.
(7) e.g., (a) Weber, U.; Huttner, G.; Scheidsteger, O.; Zsolnai, L. J.
Organomet. Chem. 1985, 289, 357. (b) Cowley, A. H.; Norman, N. C.;
Pakulski, M.; Bricker, D. L.; Russell, D. H. J. Am. Chem. Soc. 1985, 107,
8211. (c) Cowley, A. H.; Norman, N. C.; Pakulski, M. J. Am. Chem. Soc.
1984, 106, 6844. (d) Huttner, G.; Weber, U.; Sigwarth, B.; Scheidsteger,
O. Angew. Chem., Int. Ed. Engl. 1982, 21, 215.
(12) Twamley, B.; Power, P. P. J. Chem. Soc. Chem. Commun. 1998,
1979.
(8) e.g., (a) Huttner, G.; Weber, U.; Zsolnai, L. Z. Naturforsch., B: Chem.
Sci. 1982, 37, 707. (b) Plossel, K.; Huttner, G.; Zsolnai, L. Angew. Chem.,
Int. Ed. Engl. 1989, 28, 446.
(9) Romanenko, V. D.; Klebanski, E. O.; Markovski, L. N. Zh. Obshch.
Khim. 1985, 55, 2141.
(13) (a) Ruhlandt-Senge, K.; Ellison, J. J.; Wehmschulte, R. J.; Pauer,
F.; Power, P. P. J. Am. Chem. Soc. 1993, 115, 11353. (b) Schiemenz, B.;
Power, P. P. Organometallics 1996, 15, 958.
(14) Weitz, I. S.; Rabinovitz, M. J. Chem. Soc., Perkin Trans. 1 1993,
117.