2616
J . Org. Chem. 1999, 64, 2616-2617
Sch em e 1
Tota l Syn th esis of (+)-Obtu sen yn e
Kenshu Fujiwara, Daisuke Awakura, Misa Tsunashima,
Akira Nakamura, Teruki Honma, and Akio Murai*,†
Division of Chemistry, Graduate School of Science,
Hokkaido University, Sapporo 060-0810, J apan
Received February 4, 1999
The Laurencia species of red algae produce a wide variety
of cyclic ethereal C15 acetogenins.1 Among them, (+)-ob-
tusenyne (1),2 isolated from Laurencia obtusa by the Imre2a
and Fenical2b groups independently, has the particular
features of an unusual nine-membered cyclic ethereal skel-
eton, bromo (C12) and chloro (C7) substituents on the ring
both with S configurations, and a Z-enyne terminus. Since
these features present synthetic challenge,3,4,5 we have
programmed the enantioselective total synthesis of 1. The
straightforward strategy for the synthesis of 1 was evolved
from the retrosynthetic analysis shown in Scheme 1. The
nine-membered lactone 6 was to be converted to dienyl ether
5 via ethylation of the corresponding vinyl triflate with an
organocopper reagent. On the basis of our previous observa-
tion in a simple monocyclic system,4b epoxidation of 5 with
Sch em e 2a
† Corresponding author. Phone: +81-11-706-2714. Fax: +81-11-706-
2714. E-mail: amurai@sci.hokudai.ac.jp.
(1) (a) Moore, R. E. In Marine Natural Products; Scheuer, P. J ., Ed.;
Academic Press: New York, 1978; Vol. 1, pp 43-121. (b) Erickson, K. L. In
Marine Natural Products; Scheuer, P. J ., Ed.; Academic Press: New York,
1983; Vol. 5, pp 131-257.
(2) (a) King, T. J .; Imre, S.; O¨ ztunc, A.; Thomson, R. H. Tetrahedron Lett.
1979, 1453-1454. (b) Howard, B. M.; Schulte, G. R.; Fenical, W.; Solheim,
B.; Clardy, J . Tetrahedron 1980, 36, 1747-1751. Natural isomers of 1 have
also been reported: (c) Gopichand, Y.; Schmitz, F. J .; Shelly, J .; Rahman,
A.; van der Helm, D. J . Org. Chem. 1981, 46, 5192-5197. (d) Norte, M.;
Gonza´lez, A. G.; Cataldo, F.; Rodr´ıguez, M. L.; Brito, I. Tetrahedron 1991,
47, 9411-9418.
(3) For recent approaches to the total synthesis of 1, see: (a) Carling, R.
W.; Curtis, N. R.; Holmes, A. B. Tetrahedron Lett. 1989, 30, 6081-6084.
(b) Curtis, N. R.; Holmes, A. B.; Looney, M. G. Tetrahedron 1991, 47, 7171-
7178. (c) Carling, R. W.; Clark, J . S.; Holmes, A. B. J . Chem. Soc., Perkin
Trans. 1 1992, 83-94. (d) Curtis, N. R.; Holmes, A. B.; Looney, M. G.
Tetrahedron Lett. 1992, 33, 671-674. (e) Curtis, N. R.; Holmes, A. B.
Tetrahedron Lett. 1992, 33, 675-678. (f) Elliott, M. C.; Moody, C. J .;
Mowlem, T. J . Synlett 1993, 909-910. (g) Brown, D. S.; Elliott, M. C.; Moody,
C. J .; Mowlem, T. J . J . Chem. Soc., Perkin Trans. 1 1995, 1137-1144. (h)
Brandes, A.; Eggert, U.; Hoffmann, H. M. R. Synlett 1994, 745-747. (i)
Brandes, A.; Hoffmann, H. M. R. Tetrahedron 1995, 51, 145-154. (j)
Pohlmann, J .; Sabater, C.; Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl.
1998, 37, 633-635.
a
Reagents and conditions: (a) BuLi (1.1 equiv), THF, -78 °C, 50
min, then BF3‚OEt2 (1 equiv), 30 min, then 8 (0.5 equiv), -78 °C, 1 h,
20 °C, 1 h, 85% from 8; (b) H2, Lindlar’s cat., EtOH-quinoline (250:1),
20 °C, 2 h, 98%; (c) K2CO3 (1.3 equiv), MeOH, 30 °C, 10 h, 100%; (d)
TBAF (2 equiv), THF, 20 °C, 2 h, 99%; (e) Et2NH‚HCl (5 equiv), Ti(O-
i-Pr)4 (1.5 equiv), 20 °C, 48 h, 82% (14:11 ) 4:1); (f) TBSCl (1.1 equiv),
imidazole (2.1 equiv), DMF, 0 °C, 3 h, 91%; (g) 2 M HCl, THF, 20 °C,
13 h; (h) 1,3-propanedithiol (2 equiv), BF3‚OEt2 (1.5 equiv), 20 °C, 45
min, 99% from 14; (i) TBDPSCl (1.2 equiv), imidazole (2 equiv), CH2Cl2,
20 °C, 75 min, 99%; (j) (CF3CO2)2IPh (2 equiv), MeCN-H2O (9:1), 0
(4) (a) Fujiwara, K.; Tsunashima, M.; Awakura, D.; Murai, A. Tetrahe-
dron Lett. 1995, 36, 8263-8266. (b) Fujiwara, K.; Tsunashima, M.; Awakura,
D.; Murai, A. Chem. Lett. 1997, 665-666.
(5) For recent syntheses of nine-membered cyclic ethers, see: (a) Over-
man, L. E.; Blumenkopf, T. A.; Castan˜eda, A.; Thompson, A. S. J . Am. Chem.
Soc. 1986, 108, 3516-3517. (b) Nicolaou, K. C.; McGarry, D. G.; Somers, P.
K.; Veale, C. A.; Furst, G. T. J . Am. Chem. Soc. 1987, 109, 2504-2506. (c)
Nicolaou, K. C.; McGarry, D. G.; Somers, P. K.; Kim, B. H.; Ogilvie, W. W.;
Yiannikouros, G.; Prasad, C. V. C.; Veale, C. A.; Hark, R. R. J . Am. Chem.
Soc. 1990, 112, 6263-6276. (d) Nicolaou, K. C.; Prasad, C. V. C.; Ogilvie,
W. W. J . Am. Chem. Soc. 1990, 112, 4988-4989. (e) Nicolaou, K. C.; Shi,
G.-Q.; Gunzner, J . L.; Ga¨rtner, P.; Yang, Z. J . Am. Chem. Soc. 1997, 119,
5467-5468. (f) Nicolaou, K. C.; Yang, Z.; Ouellette, M.; Shi, G.-Q.; Ga¨rtner,
P.; Gunzner, J . L.; Agrios, K. A.; Huber, R.; Chadha, R.; Huang, D. H. J .
Am. Chem. Soc. 1997, 119, 8105-8106. (g) Nicolaou, K. C.; Yang, Z.; Shi,
G.-Q.; Gunzner, J . L.; Agrios, K. A.; Ga¨rtner, P. Nature 1998, 392, 264-
269. (h) Isobe, M.; Yenjai, C.; Tanaka, S. Synlett 1994, 916-918. (i) Isobe,
M.; Hosokawa, S.; Kira, K. Chem. Lett. 1996, 473-474. (j) Inoue, M.; Sasaki,
M.; Tachibana, K. Tetrahedron Lett. 1997, 38, 1611-1614. (k) Inoue, M.;
Sasaki, M.; Tachibana, K. Angew. Chem., Int. Ed. Engl. 1998, 37, 965-
969. (l) Palazo´n, J . M.; Mart´ın, V. S. Tetrahedron Lett. 1995, 36, 3549-
3552. (m) Alvarez, E.; Delgado, M.; Dı´az, M. T.; Hanxing, L.; Pe´rez, R.;
Mart´ın, J . D. Tetrahedron Lett. 1996, 37, 2865-2868. (n) Delgado, M.;
Mart´ın, J . D. Tetrahedron Lett. 1997, 38, 6299-6300. (o) Oishi, T.; Shoji,
M.; Maeda, K.; Kumahara, N.; Hirama, M. Synlett 1996, 1165-1167. (p)
Oishi, T.; Nagumo, Y.; Hirama, M. Chem. Commun. 1998, 1041-1042. (q)
Clark, J . S.; Kettle, J . G. Tetrahedron Lett. 1997, 38, 127-130. (r) Crimmins,
M. T.; Choy, A. L. J . Org. Chem. 1997, 62, 7548-7549. (s) Amann, C. M.;
Fisher, P. V.; Puhg, M. L.; West, F. G. J . Org. Chem. 1998, 63, 2806-2807.
(t) Stefinovic, M.; Snieckus, V. J . Org. Chem. 1998, 63, 2808-2809. (u)
Mujica, M. T.; Afonso, M. M.; Galindo, A.; Palenzuela, J . A. J . Org. Chem.
1998, 63, 9728-9738. See also refs 3 and 4.
°C, 2 min; (k) NaClO2 (2 equiv), 2-methyl-2-butene (15 equiv),
NaH2PO4‚2H2O (1.5 equiv), t-BuOH-H2O (3.5:1), 0 °C, 75 min, 82%
from 16; (l) EDCI (2 equiv), DMAP‚HCl (2 equiv), DMAP (4 equiv),
CHCl3, reflux, 61 h, 83%.
dimethyldioxirane followed by reduction of the resultant 4
with DIBALH was expected to produce 3 with the desired
regio- and stereoselectivities at C12 and C13. The enyne
terminus and Br at C12 of 1 were to be installed in 3 at the
final stage of the synthesis.
Preparation of lactone 6 from epoxide 86 is shown in
Scheme 2. Acetylene 77 was coupled with 8 by Yamaguchi’s
method,8 and the resulting 9 was partially hydrogenated to
give 10 in 83% yield. Treatment of 10 with K2CO3 followed
by deprotection of the TBS group afforded hydroxy epoxide
13 (99%). The titanium tetraisopropoxide-mediated epoxide
(6) Epoxide 8 (93%ee) was synthesized by the same method as in the
previous report for the antipode of 8. See: Gao, L.-x.; Saitoh, H.; Feng, F.;
Murai, A. Chem. Lett. 1991, 1787-1790.
(7) (a) Coates, R. M.; Hutchins, C. W. J . Org. Chem. 1979, 44, 4742-
4744. (b) Trost, B. M.; Runge, T. A. J . Am. Chem. Soc. 1981, 103, 7559-
7572. (c) Ma, D.; Lu, X. Tetrahedron 1990, 46, 6319-6330.
(8) Yamaguchi, M.; Hirao, I. Tetrahedron Lett. 1983, 24, 391-394.
10.1021/jo990212i CCC: $18.00 © 1999 American Chemical Society
Published on Web 03/26/1999