Organic Letters
Letter
unambiguously proven by 3JC,H couplings in the 2D-NMR. The
suggested intermediate I could not be verified by this approach.
In summary, the amalgamation of cyclopropenone type
catalysts and carboxylic acid chloride reagents facilitated the
straightforward transformation of alcohols 1 into chloro, bromo,
and iodo alkanes of type 2, 6, and 7 in high catalytic efficacy.
Remarkably, the present protocol allows (1) catalyst loadings as
low as 1 mol % and (2) application of AcCl as reagent for the first
time in an SN process under inversion of the stereochemistry.
Additionally, the novel procedure is distinguished by several
other important advantages such as high levels of (3)
compatibility with acid sensitive functional groups, (4) stereo-
and regioselectivity, and (5) scalability. In view of these
significant enhancements and the operational simplicity, our
novel protocol is expected to have a significant impact on
synthetic chemistry laboratories in academia and industry.
Lambert, T. H. Org. Lett. 2011, 13, 740−743. (d) Li, L.; Ni, C.; Wang, F.;
Hu, J. Nat. Commun. 2016, 7, 13320.
(6) For the application of tropone in SN-protocols, see: (a) Nguyen, T.
V.; Bekensir, A. Org. Lett. 2014, 16, 1720−1723. (b) Nguyen, T. V.;
Lyons, D. J. M. Chem. Commun. 2015, 51, 3131−3134.
(7) For triphenylphosphine catalyzed nucleophilic substitution
approaches, see: (a) Denton, R. M.; An, J.; Adeniran, B. Chem. Commun.
2010, 46, 3025−3027. (b) Denton, R. M.; An, J.; Adeniran, B.; Blake, A.
J.; Lewis, W.; Poulton, A. M. J. Org. Chem. 2011, 76, 6749−6767.
(8) (a) Huy, P. H.; Motsch, S.; Kappler, S. M. Angew. Chem., Int. Ed.
2016, 55, 10145−10149 Angew. Chem. 2016, 128, 10300−10304.
(9) For variants of the Mitsunobu reaction that are promoted by Lewis
base catalysts (5−10 mol % typically), see: (a) But, T. Y. S. B.; Toy, P. H.
J. Am. Chem. Soc. 2006, 128, 9636−9637. (b) O’Brien, C. J. PCT Int.
Appl. WO2010/118042A2, 2010. (c) Hirose, D.; Taniguchi, T.;
Ishibashi, H. Angew. Chem., Int. Ed. 2013, 52, 4613−4617 Angew.
Chem. 2013, 125, 4711−4715. (d) Hirose, D.; Gazvoda, M.; Kosmrlj, J.;
Taniguchi, T. Chem. Sci. 2016, 7, 5148−5159. (e) Buonomo, J. A.;
Aldrich, C. C. Angew. Chem., Int. Ed. 2015, 54, 13041−13044. Angew.
Chem. 2015, 127, 13233−13236 (f) Hirose, D.; Gazvoda, M.; Kosmrlj,
J.; Taniguchi, T. Org. Lett. 2016, 18, 4036−4039.
(10) For selected reviews on unimolecular nucleophilic substitution
(SN1) protocols, see: (a) Emer, E.; Sinisi, R.; Capdevila, M. G.;
Petruzziello, D.; De Vincentiis, F.; Cozzi, P. G. Eur. J. Org. Chem. 2011,
2011, 647−666. (b) Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2013, 113,
6905−6948. (c) Kumar, R.; Van der Eycken, E. V. Chem. Soc. Rev. 2013,
́
42, 1121−1146. (d) Baeza, A.; Najera, C. Synthesis 2014, 46, 25−34.
(e) Dryzhakov, M.; Richmond, E.; Moran, J. Synthesis 2016, 48, 935−
959.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Optimization data, experimental procedures, character-
ization of new compounds, and spectral data (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(11) For a striking Brønsted acid catalyzed cyclodehydration protocol
under SN2 inversion, see Bunrit, A.; Dahlstrand, C.; Olsson, S. K.; Srifa,
Notes
P.; Huang, G.; Orthaber, A.; Sjoberg, P. J. R.; Biswas, S.; Himo, F.;
̈
Samec, J. S. M. J. Am. Chem. Soc. 2015, 137, 4646−4649.
(12) The lowest catalyst loading has been reported by Denton in ref 7b.
2-Chlorooctane could be prepared in 82% yield (determined via internal
standard) utilizing 3 mol % of triphenylphosphineoxide as catalyst,
which corresponds to a TON of 27.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
(13) Only certain tertiary benzylic and allylic alcohols can be efficiently
converted with carboxylic acid chlorides (e.g., AcCl) to alkyl chlorides:
(a) Bachmann, W. E.; Hauser, C. R.; Hudson, B. E., Jr. Org. Synth. 1943,
23, 100−104. (b) Kishali, N.; Polat, M. F.; Altundas, R.; Kara, Y. Helv.
Chim. Acta 2008, 91, 67−71.
(14) For the initial discovery of cyclopropenones, see: (a) Breslow, R.;
Haynie, R. R.; Mirra, J. J. Am. Chem. Soc. 1959, 81, 247−248.
(b) Kursanov, D. N.; Volpin, M. E.; Koreshkov, Y. D. Izv. Akad. Nauk
SSSR, Otd. Khim. Nauk 1959, 560.
(15) For reviews on cyclopropenium ions and cyclopropenones, see:
(a) Krebs, A. W. Angew. Chem., Int. Ed. Engl. 1965, 4, 10−22 Angew.
Chem. 1965, 77, 10−22. (b) Potts, K. T.; Baum, J. S. Chem. Rev. 1974,
74, 189−213. (c) Komatsu, K.; Kitagawa, T. Chem. Rev. 2003, 103,
1371−1428.
We thank the German Research Foundation (DFG) and the
Fonds of the Chemical Industry (Liebig fellowship for P.H., and
Ph.D. fellowship for T.S.) for generous support.
REFERENCES
■
(1) (a) Larock, R. C. Comprehensive Organic Transformations; Wiley-
VCH: New York, 1999; pp 689−702. (b) Margaretha, P. Science of
Synthesis; Schaumann, E., Ed.; Georg Thieme: Stuttgart, 2007; Vol. 35,
pp 1−188. (c) Smith, M. B. March’s Advanced Organic Chemistry, 7th ed.;
Wiley: Hoboken, NJ, 2013; pp 500−503. (d) An, J.; Denton, R. M.;
Lambert, T. H.; Nacsa, E. D. Org. Biomol. Chem. 2014, 12, 2993−3003.
(e) Huy, P. H.; Hauch, T.; Filbrich, I. Synlett 2016, 27, 2631−2636.
(2) Selected reviews about sustainability in chemistry: (a) Sheldon, R.
A. Green Chem. 2007, 9, 1273−1283. (b) Li, C. J.; Trost, B. M. Proc. Natl.
Acad. Sci. U. S. A. 2008, 105, 13197−13202. (c) Newhouse, T.; Baran, P.
S.; Hoffmann, R. W. Chem. Soc. Rev. 2009, 38, 3010−3021. (d) Anastas,
P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301−312. (e) Sheldon, R. A.
Chem. Soc. Rev. 2012, 41, 1437−1451. (f) Dunn, P. J. Chem. Soc. Rev.
2012, 41, 1452−1461.
(16) (a) Netland, K. A.; Gundersen, L.-L.; Rise, F. Synth. Commun.
2000, 30, 1767−1777 For selected examples for the production of
diarylcyclopropenones, see. (b) Breslow, R.; Posner, J. Org. Synth. 1967,
47, 62−63. (c) West, R.; Zecher, D. C.; Goyert, W. J. Am. Chem. Soc.
1970, 92, 149−154.
(17) The substitutions in the case of products 22 and 216 are more likely
to follow an SN1 pathway.
(3) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L., Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.;
Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411−420.
(4) For cyclopropenone catalyzed SN2-type protocols, see: (a) Vanos,
C. M.; Lambert, T. H. Angew. Chem., Int. Ed. 2011, 50, 12222−12226
Angew. Chem. 2011, 123, 12430−12434. (b) Nacsa, E. D.; Lambert, T.
H. Org. Lett. 2013, 15, 38−41.
(5) For cyclopropenone and 1,1-dihalogenocyclopropene mediated
nucleophilic substitutions, see: (a) Kelly, B. D.; Lambert, T. H. J. Am.
Chem. Soc. 2009, 131, 13930−13931. (b) Hardee, D. J.; Kovalchuke, L.;
Lambert, T. H. J. Am. Chem. Soc. 2010, 132, 5002−5003. (c) Kelly, B. D.;
(18) A screening of various additives in the model reaction 11 → 21
according to the robustness screen of Glorius uncovered that certain H-
bond-donor function can hamper successful chlorination; see SI, section
3 and (a) Collins, K. D.; Glorius, F. Nat. Chem. 2013, 5, 597−601.
(b) Collins, K. D.; Glorius, F. Tetrahedron 2013, 69, 7817−7825.
(19) For a recent theoretical study on cyclopropenone catalyzed
chlorinations according to ref 4a, see: Tataroglu, M. M.; Sungur, F. A. J.
Mol. Graphics Modell. 2017, 77, 106−114.
D
Org. Lett. XXXX, XXX, XXX−XXX